Theoretical Biological Physics of Structural Dynamics in Physiology and Evolution

dc.contributor.advisorDeem , Michael W.en_US
dc.contributor.committeeMemberPu, Hanen_US
dc.contributor.committeeMemberKimmel , Mareken_US
dc.creatorChen, Manen_US
dc.date.accessioned2016-01-06T21:04:25Zen_US
dc.date.available2016-01-06T21:04:25Zen_US
dc.date.created2014-12en_US
dc.date.issued2014-12-03en_US
dc.date.submittedDecember 2014en_US
dc.date.updated2016-01-06T21:04:25Zen_US
dc.description.abstractBiological systems are modular, and this modularity affects the evolution of biological systems over time and in different environments. Studying the structure of biological systems provides insight into human physiology and evolution in the natural world, which helps us to understand a wide variety of biological phenomena. In this thesis, we use theoretical and analytical methods to study the theory of personalized critical care, the rate of evolution in a rugged fitness landscape, and the structure of cancer networks and neural networks. We seek to explain how the structure of biological systems evolves over time among many possible states. Our results support the idea that changes in environmental pressure stimulates the spontaneous emergence of modular structure. In the study of prediction of the heart rate response to a spontaneous breathing trial, a non-equilibrium fluctuation dissipation theorem is applied to predict how critically ill patients will respond to this intervention. The result shows that the response of a group of similar patients to the spontaneous breathing trail can be predicted by the non-equilibrium fluctuation dissipation approach. This mathematical method may serve as part of the basis for personalized critical care. We develop a theory for the dynamics of evolution in a rugged, modular fitness landscape and show analytically how horizontal gene transfer couples to the modularity in the system and leads to more rapid rates of evolution at short times. The model analytically demonstrates a selective pressure for the prevalence of modularity in biology. We use this model to show how the evolution of the influenza virus is affected by the modularity of the proteins that are recognized by the human immune system. Comparison to influenza virus evolution data, the result shows that a modular model of the fitness landscape of the virus better fits the observed data. We then study gene and tissue networks of breast cancer patients. We find that the likelihood of metastasis in the future is correlated with an increased value of network hierarchy for expression networks of cancer-associated genes. Conversely, future metastasis and quick relapse times are negatively correlated with the values of network hierarchy in the expression network of all host genes, due to the dedifferentiation of host gene pathways and circuits. These results suggest that the hierarchy of gene expression may be useful as an additional biomarker for breast cancer prognosis. Finally, we study how the modularity of the human brain changes as children develop into adults. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. We present a model to illustrate how modularity can provide greater cognitive performance at short times, from which we extract a fitness function from the model. Quasispecies theory is used to predict how the average modularity evolves with age, illustrating the increase of modularity during development from children to adults that arises from selection for rapid cognitive function in young adults. We show that modularity may be a potential biomarker for injury, rehabilitation, or disease.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationChen, Man. "Theoretical Biological Physics of Structural Dynamics in Physiology and Evolution." (2014) Diss., Rice University. <a href="https://hdl.handle.net/1911/87735">https://hdl.handle.net/1911/87735</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/87735en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectNetwork Structureen_US
dc.subjectModularityen_US
dc.subjectHierarchyen_US
dc.subjectfitnessen_US
dc.subjectHeart rate dynamicsen_US
dc.subjectFluctuation Dissipation Theoryen_US
dc.subjectHorizontal Gene Transferen_US
dc.subjectCancer Networken_US
dc.subjectfMRIen_US
dc.subjectEvolutionen_US
dc.subjectBrain Developmenten_US
dc.titleTheoretical Biological Physics of Structural Dynamics in Physiology and Evolutionen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentPhysics and Astronomyen_US
thesis.degree.disciplineNatural Sciencesen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CHEN-DOCUMENT-2014.pdf
Size:
7.18 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.6 KB
Format:
Plain Text
Description: