A globally convergent algorithm for training multilayer perceptrons for data classification and interpolation

Date
1991
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

This thesis addresses the issue of applying a "globally" convergent optimization scheme to the training of multi-layer perceptrons, a class of Artificial Neural Networks, for the detection and classification of signals in single- and multi-user communication systems. The research is motivated by the fact that a multi-layer perceptron is theoretically capable of approximating any nonlinear function to within any specified accuracy. The object function to which we apply the optimization algorithm is the error function of the multilayer perceptron, i.e., the average of the sum of the squares of the differences between the actual and the desired outputs to specified inputs. Until recently, the most widely used training algorithm has been the Backward Error Propagation algorithm, which is based on the algorithm for "steepest descent" and hence, is at best linearly convergent. The algorithm discussed here combines the merits of two well known "global" algorithms--the Conjugate Gradients and the Trust Region algorithms. A further technique known as preconditioning is used to speed up the convergence by clustering the eigenvalues of the "effective Hessian". The Preconditioned Conjugate Gradients--Trust Regions algorithm is found to be superlinearly convergent and hence, outperforms the standard backpropagation routine.

Description
Degree
Master of Science
Type
Thesis
Keywords
Electronics, Electrical engineering, Artificial intelligence
Citation

Madyastha, Raghavendra K.. "A globally convergent algorithm for training multilayer perceptrons for data classification and interpolation." (1991) Master’s Thesis, Rice University. https://hdl.handle.net/1911/13532.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page