Domain Decomposition for Elliptic Partial Differential Equations with Neumann Boundary Conditions

dc.contributor.authorGonzalez, Ruthen_US
dc.contributor.authorWheeler, M.F.en_US
dc.date.accessioned2018-06-18T17:27:37Zen_US
dc.date.available2018-06-18T17:27:37Zen_US
dc.date.issued1987-05en_US
dc.date.noteMay 1987en_US
dc.description.abstractDiscretization of a self-adjoint elliptic partial differential equation by finite differences or finite elements yields a large, sparse, symmetric system of equations, <em>Ax=b</em>. We use the preconditioned conjugate gradient method with domain decomposition to develop an effective, vectorizable preconditioner which is suitable for solving large two-dimensional problems on vector and parallel machines.en_US
dc.format.extent12 ppen_US
dc.identifier.citationGonzalez, Ruth and Wheeler, M.F.. "Domain Decomposition for Elliptic Partial Differential Equations with Neumann Boundary Conditions." (1987) <a href="https://hdl.handle.net/1911/101621">https://hdl.handle.net/1911/101621</a>.en_US
dc.identifier.digitalTR87-10en_US
dc.identifier.urihttps://hdl.handle.net/1911/101621en_US
dc.language.isoengen_US
dc.titleDomain Decomposition for Elliptic Partial Differential Equations with Neumann Boundary Conditionsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR87-10.pdf
Size:
155.83 KB
Format:
Adobe Portable Document Format