Domain Decomposition for Elliptic Partial Differential Equations with Neumann Boundary Conditions
dc.contributor.author | Gonzalez, Ruth | en_US |
dc.contributor.author | Wheeler, M.F. | en_US |
dc.date.accessioned | 2018-06-18T17:27:37Z | en_US |
dc.date.available | 2018-06-18T17:27:37Z | en_US |
dc.date.issued | 1987-05 | en_US |
dc.date.note | May 1987 | en_US |
dc.description.abstract | Discretization of a self-adjoint elliptic partial differential equation by finite differences or finite elements yields a large, sparse, symmetric system of equations, <em>Ax=b</em>. We use the preconditioned conjugate gradient method with domain decomposition to develop an effective, vectorizable preconditioner which is suitable for solving large two-dimensional problems on vector and parallel machines. | en_US |
dc.format.extent | 12 pp | en_US |
dc.identifier.citation | Gonzalez, Ruth and Wheeler, M.F.. "Domain Decomposition for Elliptic Partial Differential Equations with Neumann Boundary Conditions." (1987) <a href="https://hdl.handle.net/1911/101621">https://hdl.handle.net/1911/101621</a>. | en_US |
dc.identifier.digital | TR87-10 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/101621 | en_US |
dc.language.iso | eng | en_US |
dc.title | Domain Decomposition for Elliptic Partial Differential Equations with Neumann Boundary Conditions | en_US |
dc.type | Technical report | en_US |
dc.type.dcmi | Text | en_US |
Files
Original bundle
1 - 1 of 1