Semi-parallel architectures for real-time LDPC coding

Date
2004
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Error correcting codes (ECC) enable the communication systems to have a low-power, reliable transmission over noisy channels. Low Density Parity Check codes are the best known ECC code that can achieve data rates very close to Shannon limit. This thesis presents a semi-parallel architecture for decoding Low Density Parity Check (LDPC) codes. A modified version of Min-Sum algorithm has been used for the decoder, which has the advantage of simpler computations compared to Sum-Product algorithm without any loss in performance. To balance the area time trade-off of the design, a special structure is proposed for the parity-check matrix. An efficient semi-parallel decoder for a family of (3, 6) LDPC codes has been implemented in VHDL for programmable hardware. Simulation results show that our proposed decoder for a block length of 1536 bits can achieve data rates up to 127 Mbps. The design is scalable and reconfigurable for different block sizes.

Description
Degree
Master of Science
Type
Thesis
Keywords
Electronics, Electrical engineering
Citation

Karkooti, Marjan. "Semi-parallel architectures for real-time LDPC coding." (2004) Master’s Thesis, Rice University. https://hdl.handle.net/1911/17694.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page