Pair Creation Transparency in Gamma-Ray Pulsars

dc.contributor.advisorBaring, Matthew Gen_US
dc.contributor.committeeMemberChan, Anthony Aen_US
dc.contributor.committeeMemberDamjanovic, Danijelaen_US
dc.creatorStory, Sarah Aen_US
dc.date.accessioned2016-01-27T17:27:55Zen_US
dc.date.available2016-01-27T17:27:55Zen_US
dc.date.created2014-12en_US
dc.date.issued2014-07-30en_US
dc.date.submittedDecember 2014en_US
dc.date.updated2016-01-27T17:27:55Zen_US
dc.description.abstractPulsars are rapidly rotating, highly magnetized neutron stars that produce photon pulses in energies from radio to gamma-rays. The population of known gamma-ray pulsars has been increased nearly twenty-fold in the past six years since the launch of the Fermi Gamma-Ray Space Telescope; it now exceeds 145 sources and has defined an important part of Fermi's science legacy. In order to understand the detectability of pulsars in gamma-rays, it is important to consider not only the radiative mechanisms that produce gamma-rays, but the processes that can attenuate photons before they can leave the pulsar magnetosphere. Here I explore two such processes, one-photon magnetic pair creation and two-photon pair creation. Magnetic pair creation has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. Among the population characteristics well established for Fermi pulsars is the common occurrence of exponential turnovers in the spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. In this thesis, I explore such pair transparency constraints below the turnover energy and update earlier altitude bound determinations that have been deployed in various gamma-ray pulsar papers by the Fermi-LAT collaboration. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the magnetic pole. Our analysis clearly demonstrates that including near-threshold physics in the pair creation rate is essential to deriving accurate attenuation lengths and escape energies. The altitude bounds we compute for Fermi pulsars are typically in the range of 2-7 stellar radii and provide key information on the emission altitude in radio quiet pulsars that do not possess double peaked pulse profiles. The bound for the Crab pulsar is at a much higher altitude, with the detection by the atmospheric Cherenkov telescope MAGIC out to 350-400 GeV implying a lower bound of 310 km to the emission region, i.e., approximately 20% of the light cylinder radius. These results are also extended to the super-critical field domain, where it is found that emission in magnetars originating below around 10 stellar radii will not appear in the Fermi-LAT band. Two-photon pair creation becomes important at high altitudes and for photons produced by curvature radiation from charges flowing downward along magnetic field lines. Because the efficiency of two-photon pair creation does not depend on the local magnetic field strength, it can continue to be active in the weak-field regions far from the neutron star. It is found that two-photon pair creation can strongly attenuate photons emitted from downward-traveling charges except at very high altitudes of emission, but in the absence of rotational aberration, it is unable to produce significant opacity for upward-traveling charges unless unrealistically high neutron star surface temperatures are assumed.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationStory, Sarah A. "Pair Creation Transparency in Gamma-Ray Pulsars." (2014) Diss., Rice University. <a href="https://hdl.handle.net/1911/88167">https://hdl.handle.net/1911/88167</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/88167en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectnon-thermal radiation mechanismsen_US
dc.subjectmagnetic fieldsen_US
dc.subjectneutron starsen_US
dc.subjectpulsarsen_US
dc.subjectgamma raysen_US
dc.subjecttheoryen_US
dc.titlePair Creation Transparency in Gamma-Ray Pulsarsen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentPhysics and Astronomyen_US
thesis.degree.disciplineNatural Sciencesen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
STORY-DOCUMENT-2014.pdf
Size:
7.67 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.6 KB
Format:
Plain Text
Description: