Wavelet-Based Denoising Using Hidden Markov Models

dc.citation.bibtexNameinproceedingsen_US
dc.citation.conferenceNameIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)en_US
dc.citation.firstpage3925en_US
dc.citation.lastpage3928en_US
dc.citation.locationSalt Lake City, Utahen_US
dc.citation.volumeNumber6en_US
dc.contributor.authorBorran, Mohammad Jaberen_US
dc.contributor.authorNowak, Robert Daviden_US
dc.contributor.orgCenter for Multimedia Communications (http://cmc.rice.edu/)en_US
dc.date.accessioned2007-10-31T00:37:34Zen_US
dc.date.available2007-10-31T00:37:34Zen_US
dc.date.issued2001-05-20en_US
dc.date.modified2003-12-02en_US
dc.date.note2001-09-17en_US
dc.date.submitted2001-05-20en_US
dc.descriptionConference Paperen_US
dc.description.abstractHidden Markov models have been used in a wide variety of wavelet-based statistical signal processing applications. Typically, Gaussian mixture distributions are used to model the wavelet coefficients and the correlation between the magnitudes of the wavelet coefficients within each scale and/or across the scales is captured by a Markov tree imposed on the (hidden) states of the mixture. This paper investigates correlations directly among the wavelet coefficient amplitudes (sign à magnitude), instead of magnitudes alone. Our theoretical analysis shows that the coefficients display significant correlations in sign as well as magnitude, especially near strong edges. We propose a new wavelet-based HMM structure based on mixtures of one-sided exponential densities that exploits both sign and magnitude correlations. We also investigate the application of this for denoising the signals corrupted by additive white Gaussian noise. Using some examples with standard test signals, we show that our new method can achieve better mean squared error, and the resulting denoised signals are generally much smoother.en_US
dc.identifier.citationM. J. Borran and R. D. Nowak, "Wavelet-Based Denoising Using Hidden Markov Models," vol. 6, 2001.en_US
dc.identifier.doihttp://dx.doi.org/10.1109/ICASSP.2001.940702en_US
dc.identifier.urihttps://hdl.handle.net/1911/19741en_US
dc.language.isoengen_US
dc.subjecthidden markov modelsen_US
dc.subjectwavlet-based denoisingen_US
dc.subjectGaussianen_US
dc.subject.keywordhidden markov modelsen_US
dc.subject.keywordwavlet-based denoisingen_US
dc.subject.keywordGaussianen_US
dc.titleWavelet-Based Denoising Using Hidden Markov Modelsen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Bor2001May5Wavelet-Ba.PDF
Size:
158.15 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Bor2001May5Wavelet-Ba.PPT
Size:
287.5 KB
Format:
Microsoft Powerpoint