Limiting Approximations for Stochastic Processes in Systems Biology
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Interest in stochastic modeling of biochemical processes has increased over the past two decades due to advancements in computing power and an increased understanding of the underlying physical phenomena. The Gillespie algorithm is an exact simulation technique for reproducing sample paths from a continuous-time Markov chain. However, when spatial and temporal time scales vary within a given system, a purely stochastic approach becomes intractable. In this work, we develop two types of hybrid approximations, namely piecewise-deterministic approximations. These approaches yield strong approximations for either the entire biochemical system or a subset of the system, provided the purely stochastic system is appropriately rescaled.
Description
Advisor
Degree
Type
Keywords
Citation
Woroszylo, Casper. "Limiting Approximations for Stochastic Processes in Systems Biology." (2015) Diss., Rice University. https://hdl.handle.net/1911/88432.