The Stability of GMRES Convergence, with Application to Approximate Deflation Preconditioning

dc.contributor.authorSifuentes, Josef A.en_US
dc.contributor.authorEmbree, Marken_US
dc.contributor.authorMorgan, Ronald B.en_US
dc.date.accessioned2018-06-19T17:46:43Zen_US
dc.date.available2018-06-19T17:46:43Zen_US
dc.date.issued2011-09en_US
dc.date.noteSeptember 2011en_US
dc.description.abstractHow does GMRES convergence change when the coefficient matrix is perturbed? Using spectral perturbation theory and resolvent estimates, we develop simple, general bounds that quantify the lag in convergence such a perturbation can induce. This analysis is particularly relevant to preconditioned systems, where an ideal preconditioner is only approximately applied in practical computations. To illustrate the utility of this approach, we combine our analysis with Stewart's invariant subspace perturbation theory to develop rigorous bounds on the performance of approximate deflation preconditioning using Ritz vectors.en_US
dc.format.extent21 ppen_US
dc.identifier.citationSifuentes, Josef A., Embree, Mark and Morgan, Ronald B.. "The Stability of GMRES Convergence, with Application to Approximate Deflation Preconditioning." (2011) <a href="https://hdl.handle.net/1911/102187">https://hdl.handle.net/1911/102187</a>.en_US
dc.identifier.digitalTR11-13en_US
dc.identifier.urihttps://hdl.handle.net/1911/102187en_US
dc.language.isoengen_US
dc.titleThe Stability of GMRES Convergence, with Application to Approximate Deflation Preconditioningen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR11-13.pdf
Size:
797.72 KB
Format:
Adobe Portable Document Format