On the existence of kernel functions for the heat equation in n dimensions

Date
1973
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Let be a bounded open set in Fnx (tQ,t^) such that each cross section t = nfl(Rnx {t}) is star-like. We define the lateral boundary ST Q = U SO,. L t€(t,tl) C and the parabolic boundary S^O = ô^O U t where fl. denotes the base of * c Theorem 1.1: Let be as above, then there exists a function u such that u is continuous in OU S^O* u > in Q, u = on S^O, and u is caloric in . Theorem 122; Suppose the boundary of extends continuously to a point (x',tQ) in the boundary of the base. Then there exists a kernel function in at the point (x',tQ). Theorem 1.3: There exists a kernel function at an interior point (XQ,tg) of the base of . If we restrict our attention somewhat we obtain the 2 following asymptotic relations Suppose a e c (,1], aa." e L^(,1), a(t) •> as t -* , and a > on (,T).

Description
Degree
Master of Arts
Type
Thesis
Keywords
Citation

Shapiro, Michael Richard. "On the existence of kernel functions for the heat equation in n dimensions." (1973) Master’s Thesis, Rice University. https://hdl.handle.net/1911/104723.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page