A Bayesian Multivariate Functional Dynamic Linear Model

dc.citation.firstpage733en_US
dc.citation.issueNumber518en_US
dc.citation.journalTitleJournal of the American Statistical Associationen_US
dc.citation.lastpage744en_US
dc.citation.volumeNumber112en_US
dc.contributor.authorKowal, Daniel R.en_US
dc.contributor.authorMatteson, David S.en_US
dc.contributor.authorRuppert, Daviden_US
dc.date.accessioned2022-06-15T14:16:49Zen_US
dc.date.available2022-06-15T14:16:49Zen_US
dc.date.issued2017en_US
dc.description.abstractWe present a Bayesian approach for modeling multivariate, dependent functional data. To account for the three dominant structural features in the data—functional, time dependent, and multivariate components—we extend hierarchical dynamic linear models for multivariate time series to the functional data setting. We also develop Bayesian spline theory in a more general constrained optimization framework. The proposed methods identify a time-invariant functional basis for the functional observations, which is smooth and interpretable, and can be made common across multivariate observations for additional information sharing. The Bayesian framework permits joint estimation of the model parameters, provides exact inference (up to MCMC error) on specific parameters, and allows generalized dependence structures. Sampling from the posterior distribution is accomplished with an efficient Gibbs sampling algorithm. We illustrate the proposed framework with two applications: (1) multi-economy yield curve data from the recent global recession, and (2) local field potential brain signals in rats, for which we develop a multivariate functional time series approach for multivariate time–frequency analysis. Supplementary materials, including R code and the multi-economy yield curve data, are available online.en_US
dc.identifier.citationKowal, Daniel R., Matteson, David S. and Ruppert, David. "A Bayesian Multivariate Functional Dynamic Linear Model." <i>Journal of the American Statistical Association,</i> 112, no. 518 (2017) Taylor & Francis: 733-744. ttps://doi.org/10.1080/01621459.2016.1165104.en_US
dc.identifier.doittps://doi.org/10.1080/01621459.2016.1165104en_US
dc.identifier.urihttps://hdl.handle.net/1911/112464en_US
dc.language.isoengen_US
dc.publisherTaylor & Francisen_US
dc.rightsThis is an author's pre-print. The published article is copyrighted by Taylor & Francis.en_US
dc.titleA Bayesian Multivariate Functional Dynamic Linear Modelen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
dc.type.publicationpre-printen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1411-0764.pdf
Size:
3.88 MB
Format:
Adobe Portable Document Format
Description: