Exploration of Tikhonov regularization for the fusion of experimental data and computational fluid dynamics

Date
1999
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

A method is developed to fuse Computational Fluid Dynamics (CFD) simulations and experimental data through the use of Tikhonov regularization. Inviscid-Viscous Interaction and Thin-Layer Navier-Stokes Equation models are used to provide CFD solutions for the flow past NACA 0012 and RAE 2822 airfoils, respectively. The velocity profile within the boundary layer and the pressure coefficient on the surface of the airfoil are merged with the corresponding experimental data. A finite element approach is applied to accomplish the numerical solution of the Tikhonov regularization method. By using over- or under-relaxation technique, relatively few iterations are needed to achieve the convergence of the fusion method. The results demonstrate that a-priori CFD solutions of low fidelity can be improved by the experimental data with less computational cost compared with more sophisticated CFD models. Alternatively, the sparse and scattered experimental data are efficiently processed by utilizing CFD models as regularization. The limitations of the Tikhonov regularization method have been examined. The result shows that the fusion method has significant advantages over a nonlinear least-square polynomial approach for interpolating and extrapolating experimental data.

Description
Degree
Master of Science
Type
Thesis
Keywords
Mechanical engineering
Citation

Wang, Wei. "Exploration of Tikhonov regularization for the fusion of experimental data and computational fluid dynamics." (1999) Master’s Thesis, Rice University. https://hdl.handle.net/1911/17309.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page