Novel Urban Floodplain Modeling Methods for Applications in Coupling Surrogate Machine Learning Methods

dc.contributor.advisorBedient, Philip Ben_US
dc.creatorGarcia, Matthew Stevenen_US
dc.date.accessioned2023-08-09T15:09:46Zen_US
dc.date.created2023-05en_US
dc.date.issued2023-03-21en_US
dc.date.submittedMay 2023en_US
dc.date.updated2023-08-09T15:09:46Zen_US
dc.description.abstractThe work shown is a solution to the limitations of long-term use for surrogate machine learning (ML) models on dynamic domains for the purpose of improved flood warning systems. The solution includes three major components, including a single model for combined flood control structural operations and inundation mapping; the modularization of a single model to minimize the computational cost for future domain updates; and a model input bootstrapping method to leverage observations while minimizing biases in the resulting surrogate ML training dataset. Together, these solutions are tested with various ML architectures to prove viability and highlight the final hurdles for implementation.en_US
dc.embargo.lift2024-05-01en_US
dc.embargo.terms2024-05-01en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationGarcia, Matthew Steven. "Novel Urban Floodplain Modeling Methods for Applications in Coupling Surrogate Machine Learning Methods." (2023) Diss., Rice University. <a href="https://hdl.handle.net/1911/115079">https://hdl.handle.net/1911/115079</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/115079en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectFlood Modelingen_US
dc.subjectHEC-RASen_US
dc.subjectFlood Warningen_US
dc.subjectMachine Learningen_US
dc.subjectModularizationen_US
dc.titleNovel Urban Floodplain Modeling Methods for Applications in Coupling Surrogate Machine Learning Methodsen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentCivil and Environmental Engineeringen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garcia-Document-2023.pdf
Size:
8.91 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.61 KB
Format:
Plain Text
Description: