Multiple window time-frequency analysis

dc.contributor.advisorBaraniuk, Richard G.en_US
dc.creatorBayram, Metinen_US
dc.date.accessioned2009-06-04T00:01:50Zen_US
dc.date.available2009-06-04T00:01:50Zen_US
dc.date.issued1996en_US
dc.description.abstractThe bias-variance trade-off is an important issue is spectrum estimation. In 1982, Thomson introduced a powerful multiple window method for stationary signals that deals with the bias-variance trade-off in an optimal fashion. In this thesis, we extend Thomson's method to the time-frequency and time-scale planes, and propose a new method to estimate the time-varying spectrum of non-stationary random processes. Unlike previous extensions of Thomson's method, we identify and utilize optimally concentrated window and wavelet functions, and develop a statistical test for detecting chirping line components. The optimal windows are the Hermite functions for time-frequency analysis, and the Morse wavelets for time-scale analysis.en_US
dc.format.extent50 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.callnoTHESIS E.E. 1996 BAYRAMen_US
dc.identifier.citationBayram, Metin. "Multiple window time-frequency analysis." (1996) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/14057">https://hdl.handle.net/1911/14057</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/14057en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectElectronicsen_US
dc.subjectElectrical engineeringen_US
dc.titleMultiple window time-frequency analysisen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentElectrical Engineeringen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Scienceen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1379514.PDF
Size:
1.64 MB
Format:
Adobe Portable Document Format