Semismooth Newton Methods for Operator Equations in Function Spaces

dc.contributor.authorUlbrich, Michaelen_US
dc.date.accessioned2018-06-18T17:48:13Zen_US
dc.date.available2018-06-18T17:48:13Zen_US
dc.date.issued2000-04en_US
dc.date.noteApril 2000en_US
dc.description.abstractWe develop a semismoothness concept for nonsmooth superposition operators in function spaces. The considered class of operators includes NCP-function-based reformulations of infinite-dimensional nonlinear complementarity problems, and thus covers a very comprehensive class of applications. Our results generalize semismoothness and alpha-order semismoothness from finite-dimensional spaces to a Banach space setting. Hereby, a new generalized differential is used that can be seen as an extension of Qi's finite-dimensional C-subdifferential to our infinite-dimensional framework. We apply these semismoothness results to develop a Newton-like method for nonsmooth operator equations and prove its local q-superlinear convergence to regular solutions. If the underlying operator is alpha-order semismoothness, convergence of q-order 1+alpha is proved. We also establish the semismoothness of composite operators and develop corresponding chain rules. The developed theory is accompanied by illustrating examples and by applications to nonlinear complementarity problems.en_US
dc.format.extent31 ppen_US
dc.identifier.citationUlbrich, Michael. "Semismooth Newton Methods for Operator Equations in Function Spaces." (2000) <a href="https://hdl.handle.net/1911/101940">https://hdl.handle.net/1911/101940</a>.en_US
dc.identifier.digitalTR00-11en_US
dc.identifier.urihttps://hdl.handle.net/1911/101940en_US
dc.language.isoengen_US
dc.titleSemismooth Newton Methods for Operator Equations in Function Spacesen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR00-11.pdf
Size:
246.81 KB
Format:
Adobe Portable Document Format