Explicit Lower Bounds of the Hausdorff Dimension of Certain Self Affine Sets
dc.citation.bibtexName | article | en_US |
dc.citation.journalTitle | Fractal in the Natural and Applied Sciences | en_US |
dc.contributor.author | Riedi, Rudolf H. | en_US |
dc.contributor.org | Digital Signal Processing (http://dsp.rice.edu/) | en_US |
dc.date.accessioned | 2007-10-31T01:01:00Z | en_US |
dc.date.available | 2007-10-31T01:01:00Z | en_US |
dc.date.issued | 1995-01-20 | en_US |
dc.date.modified | 2004-01-22 | en_US |
dc.date.submitted | 2004-01-14 | en_US |
dc.description | Journal Paper | en_US |
dc.description.abstract | A lower bound of the Hausdorff dimension of certain self-affine sets is given. Moreover, this and other known bounds such as the box dimension are expressed in terms of solutions of simple equations involving the singular values of the affinities. | en_US |
dc.identifier.citation | R. H. Riedi, "Explicit Lower Bounds of the Hausdorff Dimension of Certain Self Affine Sets," <i>Fractal in the Natural and Applied Sciences,</i> 1995. | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/20263 | en_US |
dc.language.iso | eng | en_US |
dc.subject | Discrete Mathematics | en_US |
dc.subject | Combinatorics | en_US |
dc.subject | Probability and Statistics | en_US |
dc.subject.keyword | Discrete Mathematics | en_US |
dc.subject.keyword | Combinatorics | en_US |
dc.subject.keyword | Probability and Statistics | en_US |
dc.subject.other | Multifractals | en_US |
dc.title | Explicit Lower Bounds of the Hausdorff Dimension of Certain Self Affine Sets | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
Files
Original bundle
1 - 1 of 1