Approximate dynamic factor models for mixed frequency data

dc.contributor.advisorEnsor, Katherineen_US
dc.contributor.committeeMemberKimmel, Mareken_US
dc.contributor.committeeMemberSizova, Nataliaen_US
dc.creatorZhao, Xinen_US
dc.date.accessioned2017-07-18T07:06:59Zen_US
dc.date.available2017-07-18T07:06:59Zen_US
dc.date.created2015-05en_US
dc.date.issued2015-10-15en_US
dc.date.submittedMay 2015en_US
dc.date.updated2017-07-18T07:06:59Zen_US
dc.description.abstractTime series observed at different temporal scales cannot be simultaneously analyzed by traditional multivariate time series methods. Adjustments must be made to address issues of asynchronous observations. For example, many macroeconomic time series are published quarterly and other price series are published monthly or daily. Common solutions to the analysis of asynchronous time series include data aggregation, mixed frequency vector autoregressive models, and factor models. In this research, I set up a systematic approach to the analysis of asynchronous multivariate time series based on an approximate dynamic factor model. The methodology treats observations of various temporal frequencies as contemporaneous series. A two-step model estimation and identification scheme is proposed. This method allows explicit structural restrictions that account for appropriate temporal ordering of the mixed frequency data. The methodology consistently estimates the dynamic factors, however, no prior knowledge on the factors is required. To ensure a computationally efficient robust algorithm and model specification, I make use of modern penalized likelihood methodologies. The fitted model captures the effects of temporal relationships across the asynchronous time series in an interpretable manner. The methodology is studied through simulation and applied to several examples. The simulations and examples demonstrate good performance in model specification, estimation and out-of-sample forecasting.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationZhao, Xin. "Approximate dynamic factor models for mixed frequency data." (2015) Diss., Rice University. <a href="https://hdl.handle.net/1911/95202">https://hdl.handle.net/1911/95202</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/95202en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectmixed frequency dataen_US
dc.subjectpenalized likelihood methodologiesen_US
dc.titleApproximate dynamic factor models for mixed frequency dataen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentStatisticsen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ZHAO-DOCUMENT-2015.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.6 KB
Format:
Plain Text
Description: