Multiscale Image Segmentation Using Joint Texture and Shape Analysis

dc.citation.bibtexNameinproceedingsen_US
dc.citation.conferenceNameProc. SPIE, Wavelet Applications in Signal and Image Processign VIIIen_US
dc.citation.locationSan Diego, CAen_US
dc.citation.volumeNumber4119en_US
dc.contributor.authorNeelamani, Rameshen_US
dc.contributor.authorRomberg, Justinen_US
dc.contributor.authorRiedi, Rudolf H.en_US
dc.contributor.authorChoi, Hyeokhoen_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.orgCenter for Multimedia Communications (http://cmc.rice.edu/)en_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T00:55:23Zen_US
dc.date.available2007-10-31T00:55:23Zen_US
dc.date.issued2000-07-01en_US
dc.date.modified2006-06-26en_US
dc.date.note2001-09-04en_US
dc.date.submitted2000-07-01en_US
dc.descriptionConference Paperen_US
dc.description.abstractWe develop a general framework to simultaneously exploit texture and shape characterization in multiscale image segmentation. By posing multiscale segmentation as a model selection problem, we invoke the powerful framework offered by minimum description length (MDL). This framework dictates that multiscale segmentation comprises multiscale texture characterization and multiscale shape coding. Analysis of current multiscale maximum a posteriori (MAP) segmentation algorithms reveals that these algorithms implicitly use a shape coder with the aim to estimate the optimal MDL solution, but find only an approximate solution. Towards achieving better segmentation estimates, we first propose a shape coding algorithm based on zero-trees which is well-suited to represent images with large homogeneous regions. For this coder, we design an efficient tree-based algorithm using dynamic programming that attains the optimal MDL segmentation estimate. To incorporate arbitrary shape coding techniques into segmentation, we design an iterative algorithm that uses dynamic programming for each iteration. Though the iterative algorithm is not guaranteed to attain exactly optimal estimates, it more effectively captures the prior set by the shape coder. Experiments demonstrate that the proposed algorithms yield excellent segmentation results on both synthetic and real world data examples.en_US
dc.description.sponsorshipTexas Instrumentsen_US
dc.description.sponsorshipDefense Advanced Research Projects Agencyen_US
dc.description.sponsorshipNational Science Foundationen_US
dc.identifier.citationR. Neelamani, J. Romberg, R. H. Riedi, H. Choi and R. G. Baraniuk, "Multiscale Image Segmentation Using Joint Texture and Shape Analysis," vol. 4119, 2000.en_US
dc.identifier.doihttp://dx.doi.org/10.1117/12.408607en_US
dc.identifier.urihttps://hdl.handle.net/1911/20138en_US
dc.language.isoengen_US
dc.subjectSegmentationen_US
dc.subjecttextureen_US
dc.subjectshapeen_US
dc.subjectminimum description length (MDL)en_US
dc.subjectwaveletsen_US
dc.subjecthidden Markov trees (HMT)en_US
dc.subject.keywordSegmentationen_US
dc.subject.keywordtextureen_US
dc.subject.keywordshapeen_US
dc.subject.keywordminimum description length (MDL)en_US
dc.subject.keywordwaveletsen_US
dc.subject.keywordhidden Markov trees (HMT)en_US
dc.subject.otherImage Processing and Pattern analysisen_US
dc.subject.otherWavelet based Signal/Image Processingen_US
dc.subject.otherMultiscale Methodsen_US
dc.titleMultiscale Image Segmentation Using Joint Texture and Shape Analysisen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Nee2000Aug1Multiscale.PDF
Size:
1.44 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Nee2000Aug1Multiscale.PS
Size:
6.44 MB
Format:
Postscript Files