Polynomial Root Finding
dc.citation.bibtexName | article | en_US |
dc.citation.journalTitle | IEEE Signal Processing Letters | en_US |
dc.contributor.author | Lang, Markus | en_US |
dc.contributor.author | Frenzel, Bernhard-Christian | en_US |
dc.contributor.org | Digital Signal Processing (http://dsp.rice.edu/) | en_US |
dc.date.accessioned | 2007-10-31T00:50:57Z | en_US |
dc.date.available | 2007-10-31T00:50:57Z | en_US |
dc.date.issued | 1994-10-01 | en_US |
dc.date.modified | 2004-11-10 | en_US |
dc.date.submitted | 2004-11-08 | en_US |
dc.description | Journal Paper | en_US |
dc.description.abstract | Finding polynomial roots rapidly and accurately is an important problem in many areas of signal processing. We present a program which is superior in speed and accuracy to the best methods to our knowledge, i.e., Jenkins/Traub program and the eigenvalue method. Based on this we give a simple approach to improve the accuracy for spectral factorization in the case there are double roots on the unit circle. | en_US |
dc.identifier.citation | M. Lang and B. Frenzel, "Polynomial Root Finding," <i>IEEE Signal Processing Letters,</i> 1994. | en_US |
dc.identifier.doi | http://dx.doi.org/10.1109/97.329845 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/20045 | en_US |
dc.language.iso | eng | en_US |
dc.subject | DSP | en_US |
dc.subject.keyword | DSP | en_US |
dc.subject.other | General DSP | en_US |
dc.title | Polynomial Root Finding | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
Files
Original bundle
1 - 1 of 1