Multiple Window Time Varying Spectrum Estimation

dc.citation.bibtexNamearticleen_US
dc.citation.journalTitleCambridge University Pressen_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.authorBayram, Metinen_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T00:36:12Zen_US
dc.date.available2007-10-31T00:36:12Zen_US
dc.date.issued2000-01-20en_US
dc.date.modified2004-01-22en_US
dc.date.submitted2004-01-09en_US
dc.descriptionJournal Paperen_US
dc.description.abstractWe overview a new non-parametric method for estimating the time-varying spectrum of a non-stationary random process. Our method extends Thomson's powerful multiple window spectrum estimation scheme to the time-frequency and time-scale planes. Unlike previous extensions of Thomson's method, we identify and utilize optimally concentrated Hermite window and Morse wavelet functions and develop a statistical test for extracting chirping line components. Examples on synthetic and real-world data illustrate the superior performance of the technique.en_US
dc.identifier.citationR. G. Baraniuk and M. Bayram, "Multiple Window Time Varying Spectrum Estimation," <i>Cambridge University Press,</i> 2000.en_US
dc.identifier.urihttps://hdl.handle.net/1911/19712en_US
dc.language.isoengen_US
dc.subjecttime-varying spectrumen_US
dc.subjectchirping line componentsen_US
dc.subject.keywordtime-varying spectrumen_US
dc.subject.keywordchirping line componentsen_US
dc.subject.otherTime Frequency and Spectral Analysisen_US
dc.titleMultiple Window Time Varying Spectrum Estimationen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bar2000Jan1MultipleWi.PDF
Size:
1.7 MB
Format:
Adobe Portable Document Format