Redundant and Online CORDIC for Unitary Transformations
dc.citation.bibtexName | article | en_US |
dc.citation.firstpage | 941 | en_US |
dc.citation.issueNumber | 8 | en_US |
dc.citation.journalTitle | IEEE Transactions on Computers | en_US |
dc.citation.lastpage | 954 | en_US |
dc.citation.volumeNumber | 43 | en_US |
dc.contributor.author | Hemkumar, Nariankadu D. | en_US |
dc.contributor.author | Cavallaro, Joseph R. | en_US |
dc.contributor.org | Center for Multimedia Communications (http://cmc.rice.edu/) | en_US |
dc.date.accessioned | 2007-10-31T00:46:45Z | en_US |
dc.date.available | 2007-10-31T00:46:45Z | en_US |
dc.date.issued | 1994-08-20 | en_US |
dc.date.modified | 2001-08-29 | en_US |
dc.date.submitted | 2001-08-29 | en_US |
dc.description | Journal Paper | en_US |
dc.description.abstract | Two-sided unitary transformations of arbitrary 2 x 2 matrices are needed in parallel algorithms based on Jacobi-like methods for eigenvalue and singulare value decompositions of complex matrices. This paper presents a two-sided unitary transformation structured to facilitate the integrated evaluation of parameters and application of the typically required tranformations using only the primitives afforded by CORDIC; thus enabling significant speedup in the computation of these transformations on special-purpose processor array architectures implementing Jacobi-like algorithms. We discuss implementation in (nonredundant) CORDIC to motivate and lead up to implementation in the redundant and on-line enhancements to CORDIC. Both variable and constant scale factor redundant (CFR) CORDIC approaches are detailed and it is shown that the transformations may be computed in 10n+<i>o</i> time, where n is the data precision in bits and <i>o</i> is a constant accounting for accumulated on-line delays. A more area-intesive approach uisng a novel on-line CORDIC encode angle summation/difference scheme reduces computation time to 6n+<i>o</i>. The area/time complexities involved in the various approaches are detailed. | en_US |
dc.description.sponsorship | National Science Foundation | en_US |
dc.identifier.citation | N. D. Hemkumar and J. R. Cavallaro, "Redundant and Online CORDIC for Unitary Transformations," <i>IEEE Transactions on Computers,</i> vol. 43, no. 8, 1994. | en_US |
dc.identifier.doi | http://dx.doi.org/10.1109/12.295856 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/19948 | en_US |
dc.language.iso | eng | en_US |
dc.subject | CORDC | en_US |
dc.subject | redudant arithmetic | en_US |
dc.subject | online | en_US |
dc.subject | unitary transformations | en_US |
dc.subject | VLSI | en_US |
dc.subject.keyword | CORDC | en_US |
dc.subject.keyword | redudant arithmetic | en_US |
dc.subject.keyword | online | en_US |
dc.subject.keyword | unitary transformations | en_US |
dc.subject.keyword | VLSI | en_US |
dc.title | Redundant and Online CORDIC for Unitary Transformations | en_US |
dc.type | Journal article | en_US |
dc.type.dcmi | Text | en_US |
Files
Original bundle
1 - 1 of 1