Computationally Modeling Strenthening Mechanisms in Carbon Nanotube Composites and Bundles

dc.contributor.advisorYakobson, Boris Ien_US
dc.creatorAlred, John Michaelen_US
dc.date.accessioned2019-05-17T16:25:18Zen_US
dc.date.available2019-05-17T16:25:18Zen_US
dc.date.created2018-12en_US
dc.date.issued2019-01-30en_US
dc.date.submittedDecember 2018en_US
dc.date.updated2019-05-17T16:25:19Zen_US
dc.description.abstractCarbon nanotubes (CNT) have extraordinary mechanical properties, but to take advantage of these properties in composites, bundles, and ropes requires strong bonding to achieve significant CNT-CNT or CNT-matrix load transfer. This work is a computational study examining strengthening CNT composites and bundles on the quantum, atomistic, and meso- scales. Density functional theory (DFT) and classical molecular dynamics (MD) are used to evaluate methods to improve bonding CNT-matrix crosslinking by the inclusion of dopants, defects, functional groups, and curvature. DFT and MD are also used to quantify the load transfer of CNT-CNT sulfur crosslinks. A coarse-grained (CG) technique for modeling CNTs on the mesoscale is extended to include nonconservative frictional forces which are parameterized to model crosslinking. This extended CG model is then used to predict the mechanical performance of CNT bundles on a much larger scale. In addition to utilizing these traditional computational material science methods, a general approach is developed for applying machine learning (ML) to predict the ground state electron and energy density of an atomistic system.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAlred, John Michael. "Computationally Modeling Strenthening Mechanisms in Carbon Nanotube Composites and Bundles." (2019) Diss., Rice University. <a href="https://hdl.handle.net/1911/105868">https://hdl.handle.net/1911/105868</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/105868en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectCarbon Nanotubesen_US
dc.subjectCompositeen_US
dc.subjectModelingen_US
dc.subjectMachine Learningen_US
dc.subjecten_US
dc.titleComputationally Modeling Strenthening Mechanisms in Carbon Nanotube Composites and Bundlesen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentMaterials Science and NanoEngineeringen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ALRED-DOCUMENT-2018.pdf
Size:
6.88 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.6 KB
Format:
Plain Text
Description: