Distance Matrix Completion by Numerical Optimization

dc.contributor.authorTrosset, Michael W.en_US
dc.date.accessioned2018-06-18T17:42:19Zen_US
dc.date.available2018-06-18T17:42:19Zen_US
dc.date.issued1995-10en_US
dc.date.noteOctober 1995 (Revised March 1997)en_US
dc.description.abstractConsider the problem of determining whether or not a partial dissimilarity matrix can be completed to a Euclidean distance matrix. The dimension of the distance matrix may be restricted and the known dissimilarities may be permitted to vary subject to bound constraints. This problem, which naturally arises in the study of molecular conformation, can be formulated as an optimization problem. Completion is possible if and only if the global minimum of the optimization problem is zero; furthermore, using ideas from nonmetric multidimensional scaling, it is possible to construct a sequence of objective function values that is guaranteed to converge to the global minimum. Thus, this approach provides a constructive technique for obtaining approximate solutions to a very general class of distance matrix completion problems.en_US
dc.format.extent10 ppen_US
dc.identifier.citationTrosset, Michael W.. "Distance Matrix Completion by Numerical Optimization." (1995) <a href="https://hdl.handle.net/1911/101871">https://hdl.handle.net/1911/101871</a>.en_US
dc.identifier.digitalTR95-31en_US
dc.identifier.urihttps://hdl.handle.net/1911/101871en_US
dc.language.isoengen_US
dc.titleDistance Matrix Completion by Numerical Optimizationen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR95-31.pdf
Size:
160.33 KB
Format:
Adobe Portable Document Format