Single-Frame 3D Fluorescence Microscopy with Ultra-Miniature Lensless FlatScope

dc.contributor.advisorRobinson, Jacob Ten_US
dc.contributor.committeeMemberBaraniuk, Richard Gen_US
dc.contributor.committeeMemberLandes, Christyen_US
dc.creatorAdams, Jesse Ken_US
dc.date.accessioned2019-05-16T20:14:04Zen_US
dc.date.available2019-05-16T20:14:04Zen_US
dc.date.created2017-08en_US
dc.date.issued2017-06-01en_US
dc.date.submittedAugust 2017en_US
dc.date.updated2019-05-16T20:14:04Zen_US
dc.description.abstractModern biology increasingly relies on fluorescence microscopy, which is driving demand for smaller, lighter, and cheaper microscopes. However, traditional microscope architectures suffer from a fundamental tradeoff: as lenses become smaller, they must either collect less light or image a smaller field of view. To break this fundamental tradeoff between device size and performance, we present a new concept for 3D fluorescence imaging that replaces lenses with an optimized amplitude mask placed a few hundred microns above the sensor and an efficient algorithm that can convert a single frame of captured sensor data into high-resolution 3D images. The result is FlatScope: a lensless microscope that is scarcely larger than an image sensor (roughly 0.2 grams in weight and less than 1 mm thick) and yet able to produce micron-resolution, high-frame-rate, 3D fluorescence movies covering a total volume of several cubic millimeters. The ability of FlatScope to reconstruct full 3D images from a single frame of captured sensor data allows us to image 3D volumes roughly 40,000 times faster than a laser scanning confocal microscope. We envision that this new flat fluorescence microscopy paradigm will lead to implantable endoscopes that minimize tissue damage, arrays of imagers that cover large areas, and bendable, flexible microscopes that conform to complex topographies.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAdams, Jesse K. "Single-Frame 3D Fluorescence Microscopy with Ultra-Miniature Lensless FlatScope." (2017) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/105488">https://hdl.handle.net/1911/105488</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/105488en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectLens-freeen_US
dc.subjectWide-fielden_US
dc.subjectFluorescenten_US
dc.subjectComputational Imagingen_US
dc.subjectLensesen_US
dc.subjectAlgorithmsen_US
dc.subjectUltra thinen_US
dc.subjectVolumetricen_US
dc.subjectFlaten_US
dc.subjecten_US
dc.titleSingle-Frame 3D Fluorescence Microscopy with Ultra-Miniature Lensless FlatScopeen_US
dc.typeThesisen_US
dc.type.dcmiMovingImageen_US
dc.type.materialTexten_US
thesis.degree.departmentApplied Physicsen_US
thesis.degree.disciplineNatural Sciencesen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.majorApplied Physics/Electrical Engen_US
thesis.degree.nameMaster of Scienceen_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
ADAMS-DOCUMENT-2017.pdf
Size:
34.52 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Supplemental-Movie-Microfluidic-Beads-Flowing-0.5x-Speed.mp4
Size:
6.87 MB
Format:
MP4 video
Description:
Duration: 00:00:06
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.6 KB
Format:
Plain Text
Description: