A Superlinearly Convergent O(sqrt{n}L)-Iteration Algorithm for Linear Programming

dc.contributor.authorYe, Y.en_US
dc.contributor.authorTapia, R.A.en_US
dc.contributor.authorZhang, Y.en_US
dc.date.accessioned2018-06-18T17:30:46Zen_US
dc.date.available2018-06-18T17:30:46Zen_US
dc.date.issued1991-07en_US
dc.date.noteJuly 1991en_US
dc.description.abstractIn this note we consider a large step modification of the Mizuno-Todd-Ye O (sqrt{n}L) predictor-corrector interior-point algorithm for linear programming. We demonstrate that the modified algorithm maintains its O (sqrt{n}L)-iteration complexity, while exhibiting superlinear convergence for general problems and quadratic convergence for nondegenerate problems. To our knowledge, this is the first construction of a superlinearly convergent algorithm with O (sqrt{n}L)-iteration complexity.en_US
dc.format.extent12 ppen_US
dc.identifier.citationYe, Y., Tapia, R.A. and Zhang, Y.. "A Superlinearly Convergent O(sqrt{n}L)-Iteration Algorithm for Linear Programming." (1991) <a href="https://hdl.handle.net/1911/101723">https://hdl.handle.net/1911/101723</a>.en_US
dc.identifier.digitalTR91-22en_US
dc.identifier.urihttps://hdl.handle.net/1911/101723en_US
dc.language.isoengen_US
dc.titleA Superlinearly Convergent O(sqrt{n}L)-Iteration Algorithm for Linear Programmingen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR91-22.pdf
Size:
121.11 KB
Format:
Adobe Portable Document Format