A Superlinearly Convergent O(sqrt{n}L)-Iteration Algorithm for Linear Programming
dc.contributor.author | Ye, Y. | en_US |
dc.contributor.author | Tapia, R.A. | en_US |
dc.contributor.author | Zhang, Y. | en_US |
dc.date.accessioned | 2018-06-18T17:30:46Z | en_US |
dc.date.available | 2018-06-18T17:30:46Z | en_US |
dc.date.issued | 1991-07 | en_US |
dc.date.note | July 1991 | en_US |
dc.description.abstract | In this note we consider a large step modification of the Mizuno-Todd-Ye O (sqrt{n}L) predictor-corrector interior-point algorithm for linear programming. We demonstrate that the modified algorithm maintains its O (sqrt{n}L)-iteration complexity, while exhibiting superlinear convergence for general problems and quadratic convergence for nondegenerate problems. To our knowledge, this is the first construction of a superlinearly convergent algorithm with O (sqrt{n}L)-iteration complexity. | en_US |
dc.format.extent | 12 pp | en_US |
dc.identifier.citation | Ye, Y., Tapia, R.A. and Zhang, Y.. "A Superlinearly Convergent O(sqrt{n}L)-Iteration Algorithm for Linear Programming." (1991) <a href="https://hdl.handle.net/1911/101723">https://hdl.handle.net/1911/101723</a>. | en_US |
dc.identifier.digital | TR91-22 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/101723 | en_US |
dc.language.iso | eng | en_US |
dc.title | A Superlinearly Convergent O(sqrt{n}L)-Iteration Algorithm for Linear Programming | en_US |
dc.type | Technical report | en_US |
dc.type.dcmi | Text | en_US |
Files
Original bundle
1 - 1 of 1