Simulation of CO2 sequestration in saline aquifers using discontinuous Galerkin method
dc.contributor.advisor | Riviere, Beatrice M. | en_US |
dc.contributor.committeeMember | Symes, William W | en_US |
dc.contributor.committeeMember | Warburton, Timothy | en_US |
dc.contributor.committeeMember | Verduzco, Rafael | en_US |
dc.creator | Yang, Xin | en_US |
dc.date.accessioned | 2016-01-07T21:46:30Z | en_US |
dc.date.available | 2016-01-07T21:46:30Z | en_US |
dc.date.created | 2014-12 | en_US |
dc.date.issued | 2014-08-01 | en_US |
dc.date.submitted | December 2014 | en_US |
dc.date.updated | 2016-01-07T21:46:31Z | en_US |
dc.description.abstract | Carbon dioxide disposal into deep aquifer has been an important venue to trap excess gas emission which causes global warming. In the CO2 sequestration process, CO2 is captured from the point source and injected into the saline aquifer deep enough where CO2 reaches the supercritical state and it has a very high density compared to gaseous state. This process is described by the two-phase two-component model, which involves two nonlinear time dependent advection-diffusion equations. The difficulty lies in the injection phase when the advection terms highly dominate over the diffusion terms. Discontinuous Galerkin (DG) methods, which are famous for the properties of high order accuracy, locality and locally mass conservation, have proved to be promising for advection dominated transport equations. I develop a new fully implicit fully coupled DG method called “partial upwind” method, to discretize the equations. For time discretization, it uses the backward Euler method to allow large time steps. For space discretization, it uses the usual interior penalty DG discretization for the elliptic terms and the upwind for part of the advection terms. The other part of the advection terms are handled specially for stabilization purpose. Numerical simulations show that the new DG method works well for the CO2 sequestration problems in homogenous porous media and has shown great potential in heterogenous porous media. I also compare the new method with the primal interior penalty DG method and show that the new method is superior to the usual DG method for some subsurface fluid flow problems. Though DG methods perform well for the CO2 sequestration problem, they are indeed more costly than traditional numerical methods. The first order finite volume (FV) method, on the other hand, is very efficient. A new coupled finite volume and discontinuous Galerkin method, which uses the accuracy of DG methods on some parts of the domain and the efficiency of FV methods everywhere else to reduce the computational cost, is also studied for the time-dependent advection-diffusion equations. Theoretical and numerical results show that the new coupled method converges and can be both accurate and efficient at the same time for some typical examples. We want to apply the new coupled method to the CO2 sequestration problems in the future. | en_US |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Yang, Xin. "Simulation of CO2 sequestration in saline aquifers using discontinuous Galerkin method." (2014) Diss., Rice University. <a href="https://hdl.handle.net/1911/87781">https://hdl.handle.net/1911/87781</a>. | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/87781 | en_US |
dc.language.iso | eng | en_US |
dc.rights | Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder. | en_US |
dc.subject | CO2 sequestration | en_US |
dc.subject | saline aquifer | en_US |
dc.subject | discontinuous Galerkin method | en_US |
dc.subject | fully implicit and fully coupled method | en_US |
dc.subject | partial upwind method | en_US |
dc.subject | advection-diffusion equations | en_US |
dc.subject | coupled finite volume discontinuous Galerkin method | en_US |
dc.title | Simulation of CO2 sequestration in saline aquifers using discontinuous Galerkin method | en_US |
dc.type | Thesis | en_US |
dc.type.material | Text | en_US |
thesis.degree.department | Computational and Applied Mathematics | en_US |
thesis.degree.discipline | Engineering | en_US |
thesis.degree.grantor | Rice University | en_US |
thesis.degree.level | Doctoral | en_US |
thesis.degree.name | Doctor of Philosophy | en_US |
Files
Original bundle
1 - 1 of 1