Harmonic maps and the geometry of Teichmuller space

Date
2004
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

In this thesis work, we investigate the asymptotic behavior of the sectional curvatures of the Weil-Petersson metric on Teichmuller space. It is known that the sectional curvatures are negative. Our method is to investigate harmonic maps from a nearly noded surface to nearby hyperbolic structures, hence to study the Hopf differentials associated to harmonic maps and the analytic formulas resulting from the harmonicity of the maps. Besides providing a quantitative result, our estimates imply that even though the sectional curvatures are negative, they are not staying away from zero. In other words, we show that when the complex dimension of Teichmuller space T is greater than one, then there is no negative upper bound for the sectional curvature of the Weil-Petersson metric. During the proof, we also give the explicit description of a family of tangent planes which are asymptotically flat.

Description
Degree
Doctor of Philosophy
Type
Thesis
Keywords
Mathematics
Citation

Huang, Zheng. "Harmonic maps and the geometry of Teichmuller space." (2004) Diss., Rice University. https://hdl.handle.net/1911/18643.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page