Robust Privacy-Preserving Fingerprint Authentication

dc.contributor.advisorKoushanfar, Farinazen_US
dc.contributor.committeeMemberVeeraraghavan, Ashoken_US
dc.contributor.committeeMemberOrchard, Michaelen_US
dc.creatorZhang, Yeen_US
dc.date.accessioned2016-02-05T21:27:52Zen_US
dc.date.available2016-02-05T21:27:52Zen_US
dc.date.created2016-05en_US
dc.date.issued2016-01-08en_US
dc.date.submittedMay 2016en_US
dc.date.updated2016-02-05T21:27:52Zen_US
dc.description.abstractThis paper presents the first scalable, efficient, and reliable privacy-preserving fingerprint authentication based on minutiae representation. Our method is provably secure by leveraging the Yao's classic Garbled Circuit (GC) protocol. While the concept of using GC for secure fingerprint matching has been suggested earlier, to the best of our knowledge, no prior reliable method or implementation applicable to real fingerprint data has been available. Our technique achieves both accuracy and practicability by customizing a widely adopted minutiae-based fingerprint matching algorithm, Bozorth matcher, as our core authentication engine. We modify the Bozorth matcher and identify certain sensitive parts of this algorithm. For these critical parts, we create a sequential circuit description which can be efficiently synthesized and customized to GC using the TinyGarble framework. We show evaluations of our modified matching algorithm on a standard fingerprint database FVC2002 DB2 to demonstrate its reliability. The implementation of privacy-preserving fingerprint authentication using Synopsis Design Compiler on a commercial Intel processor shows the efficiency and scalability of the proposed methodologies.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationZhang, Ye. "Robust Privacy-Preserving Fingerprint Authentication." (2016) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/88408">https://hdl.handle.net/1911/88408</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/88408en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectSecure Function Evaluationen_US
dc.subjectSecure Multiparty Computationen_US
dc.subjectFingerprint Authenticationen_US
dc.subjectGarbled Circuiten_US
dc.titleRobust Privacy-Preserving Fingerprint Authenticationen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentElectrical and Computer Engineeringen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Scienceen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ZHANG-DOCUMENT-2016.pdf
Size:
1.32 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.6 KB
Format:
Plain Text
Description: