The Sphere of Convergence of Newton's Method on Two Equivalent Systems from Nonlinear Programming

dc.contributor.authorVillalobos, Cristinaen_US
dc.contributor.authorTapia, Richarden_US
dc.contributor.authorZhang, Yinen_US
dc.date.accessioned2018-06-18T17:47:33Zen_US
dc.date.available2018-06-18T17:47:33Zen_US
dc.date.issued1999-04en_US
dc.date.noteApril 1999en_US
dc.description.abstractWe study a local feature of a Newton logarithmic barrier function method and a Newton primal-dual interior-point method. In particular, we study the radius of the sphere of convergence of Newton's method on two equivalent systems associated with the two aforementioned interior-point methods for nondegenerate problems in inequality contrained optimization problems. Our theoretical and numerical results are clearly in favor of using Newton primal-dual methods for solving the optimization problem. This work is an extension of the authors' earlier work [10] on linear programming problems.en_US
dc.format.extent23 ppen_US
dc.identifier.citationVillalobos, Cristina, Tapia, Richard and Zhang, Yin. "The Sphere of Convergence of Newton's Method on Two Equivalent Systems from Nonlinear Programming." (1999) <a href="https://hdl.handle.net/1911/101920">https://hdl.handle.net/1911/101920</a>.en_US
dc.identifier.digitalTR99-15en_US
dc.identifier.urihttps://hdl.handle.net/1911/101920en_US
dc.language.isoengen_US
dc.titleThe Sphere of Convergence of Newton's Method on Two Equivalent Systems from Nonlinear Programmingen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR99-15.pdf
Size:
241.34 KB
Format:
Adobe Portable Document Format