Bayesian Tree-Structured Image Modeling using Wavelet-domain Hidden Markov Models

dc.citation.bibtexNamearticleen_US
dc.citation.firstpage1056en_US
dc.citation.issueNumber7en_US
dc.citation.journalTitleIEEE Transactions on Image Processingen_US
dc.citation.lastpage1068en_US
dc.citation.volumeNumber10en_US
dc.contributor.authorRomberg, Justinen_US
dc.contributor.authorChoi, Hyeokhoen_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.orgCenter for Multimedia Communications (http://cmc.rice.edu/)en_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T01:02:40Zen_US
dc.date.available2007-10-31T01:02:40Zen_US
dc.date.issued2001-07-01en_US
dc.date.modified2006-06-06en_US
dc.date.submitted2002-07-10en_US
dc.descriptionJournal Paperen_US
dc.description.abstractWavelet-domain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree (HMT) model captures the key features of the joint probability density of the wavelet coefficients of real-world data. One potential drawback to the HMT framework is the need for computationally expensive iterative training to fit an HMT model to a given data set (using the Expectation-Maximization algorithm, for example). In this paper, we greatly simplify the HMT model by exploiting the inherent self-similarity of real-world images. This simplified model specifies the HMT parameters with just nine meta-parameters (independent of the size of the image and the number of wavelet scales). We also introduce a Bayesian universal HMT (uHMT) that fixes these nine parameters. The uHMT requires no training of any kind. While extremely simple, we show using a series of image estimation/denoising experiments that these new models retain nearly all of the key image structure modeled by the full HMT. Finally, we propose a fast shift-invariant HMT estimation algorithm that outperforms other wavelet-based estimators in the current literature, both visually and in mean-square error.en_US
dc.description.sponsorshipDefense Advanced Research Projects Agencyen_US
dc.description.sponsorshipOffice of Naval Researchen_US
dc.description.sponsorshipNational Science Foundationen_US
dc.identifier.citationJ. Romberg, H. Choi and R. G. Baraniuk, "Bayesian Tree-Structured Image Modeling using Wavelet-domain Hidden Markov Models," <i>IEEE Transactions on Image Processing,</i> vol. 10, no. 7, 2001.en_US
dc.identifier.doihttp://dx.doi.org/10.1109/83.931100en_US
dc.identifier.urihttps://hdl.handle.net/1911/20297en_US
dc.language.isoengen_US
dc.subjecthidden markov modelsen_US
dc.subjectbesov spaceen_US
dc.subjectcycle spinningen_US
dc.subjectimage denoisingen_US
dc.subject.keywordhidden markov modelsen_US
dc.subject.keywordbesov spaceen_US
dc.subject.keywordcycle spinningen_US
dc.subject.keywordimage denoisingen_US
dc.subject.otherImage Processing and Pattern analysisen_US
dc.subject.otherWavelet based Signal/Image Processingen_US
dc.subject.otherMultiscale Methodsen_US
dc.titleBayesian Tree-Structured Image Modeling using Wavelet-domain Hidden Markov Modelsen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Rom2001Jul1BayesianTr.PDF
Size:
305.19 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Rom2001Jul1BayesianTr.PS
Size:
2.12 MB
Format:
Postscript Files