High performance high-order numerical methods: applications in ocean modeling

dc.contributor.advisorWarburton, Timothyen_US
dc.contributor.committeeMemberSymes, Williamen_US
dc.contributor.committeeMemberBradshaw, Stephenen_US
dc.contributor.committeeMemberBeatrice, Riviereen_US
dc.creatorGandham, Rajeshen_US
dc.date.accessioned2016-02-04T15:30:17Zen_US
dc.date.available2016-02-04T15:30:17Zen_US
dc.date.created2015-12en_US
dc.date.issued2015-08-27en_US
dc.date.submittedDecember 2015en_US
dc.date.updated2016-02-04T15:30:17Zen_US
dc.description.abstractThis thesis presents high-order numerical methods for time-dependent simulations of oceanic wave propagation on modern many-core hardware architecture. Simulation of the waves such as tsunami, is challenging because of the varying fluid depths, propagation in many regions, requirement of high resolution near the shore, complex nonlinear wave phenomenon, and necessity of faster than real-time predictions. This thesis addresses issues related to stability, accuracy, and efficiency of the numerical simulation of these waves. For the simulation of tsunami waves, a two-dimensional nonlinear shallow water PDE model is considered. Discontinuous Galerkin (DG) methods on unstructured triangular meshes are used for the numerical solution of the model. These methods are not stable for nonlinear problems. To address the stability of these methods, a total variational bounded slope limiter in conjunction with a positive preserving scheme is developed, in particular for unstructured triangular meshes. Accuracy and stability of the methods are verified with test cases found in literature. These methods are also validated using 2004 Indian Ocean tsunami data to demonstrate faster than real-time simulation capability for practical problems using a commodity workstation. For accurate modeling of tsunami and ocean waves, in general, a three-dimensional hydrostatic incompressible Navier-Stokes model along with free surface conditions is considered. DG discretizations on unstructured prismatic elements are used for the numerical solutions. These prismatic elements are obtained by extruding the triangular meshes from ocean free surface to the ocean bottom. The governing equations are represented in a fixed sigma coordinate reference system. The limiting procedure, time-stepping method, accelerated implementations are adopted from two-dimensional formulations. The runtime performance of this three-dimensional method is compared with the performance of the two-dimensional shallow water model, to give an estimate of computational overhead in moving forward to three-dimensional models in practical ocean modeling applications. A GPU accelerated unsmooth aggregation algebraic method is developed. Algebraic multi-grid method is used as a linear solver in many engineering applications such as computational fluid dynamics. The developed method involves a setup stage and a solution stage. This method is parallelized for both stages unlike most of the methods that are parallelized only for the solution stage. Efficiency of the setup is crucial in these applications since the setup has to be performed many times. The efficiency of the method is demonstrated using a sequence of downsized problems. The computational kernels are expressed in an extensive multi-threading library OCCA. Using OCCA, the developed implementations achieve portability across various hardware architectures such as GPUs, CPUs, and multi-threading programming models OpenCL, CUDA, and OpenMP. The optimal performance of these kernels across various thread models and hardware architecture is compared.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationGandham, Rajesh. "High performance high-order numerical methods: applications in ocean modeling." (2015) Diss., Rice University. <a href="https://hdl.handle.net/1911/88347">https://hdl.handle.net/1911/88347</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/88347en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectTsunami modelingen_US
dc.subjectocean modelingen_US
dc.subjectshallow water equationsen_US
dc.subjectdiscontinuous Galerkin methodsen_US
dc.subjectGPU computingen_US
dc.subjectCUDAen_US
dc.subjectOpenCLen_US
dc.subjectOpenMPen_US
dc.subjectfaster than realtime simulationen_US
dc.titleHigh performance high-order numerical methods: applications in ocean modelingen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentComputational and Applied Mathematicsen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GANDHAM-DOCUMENT-2015.pdf
Size:
19.77 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.61 KB
Format:
Plain Text
Description: