Correcting an Inconsistent System of Linear Inequalities by Nonlinear Programming

dc.contributor.authorAmaral, Paulaen_US
dc.contributor.authorTrosset, Michael W.en_US
dc.contributor.authorBarahona, Pedroen_US
dc.date.accessioned2018-06-18T17:48:14Zen_US
dc.date.available2018-06-18T17:48:14Zen_US
dc.date.issued2000-07en_US
dc.date.noteJuly 2000en_US
dc.description.abstractWe consider the problem of correcting an inconsistent system of linear inequalities, Ax <= b, subject to nonnegativity constraints, x >= 0. We formulate this problem as a nonlinear program and derive the corresponding Karush-Kuhn-Tucker conditions. These conditions reveal several interesting properties that solutions must satisfy and allow us to derive several equivalent problems that involve fewer decision variables and are more amenable to solution. We propose using a gradient projection method to minimize an objective function Ø(x) subject only to x >= 0. We also propose a hybrid approach that exploits an interesting relation between the correction problem and the method of total least squares.en_US
dc.format.extent12 ppen_US
dc.identifier.citationAmaral, Paula, Trosset, Michael W. and Barahona, Pedro. "Correcting an Inconsistent System of Linear Inequalities by Nonlinear Programming." (2000) <a href="https://hdl.handle.net/1911/101955">https://hdl.handle.net/1911/101955</a>.en_US
dc.identifier.digitalTR00-27en_US
dc.identifier.urihttps://hdl.handle.net/1911/101955en_US
dc.language.isoengen_US
dc.titleCorrecting an Inconsistent System of Linear Inequalities by Nonlinear Programmingen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR00-27.pdf
Size:
169.56 KB
Format:
Adobe Portable Document Format