Distributed Resource Allocation with Local Information

dc.contributor.advisorSabharwal, Ashutoshen_US
dc.contributor.committeeMemberAazhang, Behnaamen_US
dc.contributor.committeeMemberKnightly, Edward W.en_US
dc.contributor.committeeMemberHeinkenschloss, Matthiasen_US
dc.creatorDash, Debashisen_US
dc.date.accessioned2014-08-25T18:52:24Zen_US
dc.date.available2014-08-25T18:52:24Zen_US
dc.date.created2013-12en_US
dc.date.issued2013-12-09en_US
dc.date.submittedDecember 2013en_US
dc.date.updated2014-08-25T18:52:25Zen_US
dc.description.abstractMaking distributed decisions based on incomplete information is inevitable in dynamic wireless networks due to a multitude of constraints. We study the effects of incomplete information on system performance in two parts. We first analyze the effect of incomplete topology information on network capacity and then the effect of partial traffic information on the capacity of a two-flow interference network. In the first part of the thesis, we study the effect of local topology information based resource allocation on the number of conflicts (called defects) produced in the network. First we show its equivalence to sum rate maximization of the network. Then we prove the non-existence of an universal local coloring protocol that can produce defect-free coloring. Next we find the optimal protocol with no information and a local coloring protocol for path graphs that can achieve Nash equilibrium. We develop a general framework to analyze any local coloring protocol based on a randomized starting point that can be applied to any graph. Finally we develop a graph decomposition method to apply it to any graph with non-overlapping cliques and cycles. In the second part of the thesis, we study a two-user cognitive channel, where the primary flow is sporadic, cannot be re-designed and operating below its link capacity. To study the impact of primary traffic uncertainty, we propose a block activity model that captures the random on-off periods of primary's transmissions. Each block in the model can be split into parallel Gaussian-mixture channels, such that each channel resembles a multiple user channel from the point of view of the secondary user. The secondary senses the current state of the primary at the start of each block. We show that the optimal power transmitted depends on the sensed state and the optimal power profile is either growing or decaying in power as a function of time. We show that such a scheme achieves capacity when there is no noise in the sensing. The optimal transmission for the secondary performs rate splitting and follows a layered water-filling power allocation for each parallel channel to achieve capacity.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationDash, Debashis. "Distributed Resource Allocation with Local Information." (2013) Diss., Rice University. <a href="https://hdl.handle.net/1911/76704">https://hdl.handle.net/1911/76704</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/76704en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectChannel capacityen_US
dc.subjectGame theoryen_US
dc.subjectCognitive radioen_US
dc.subjectGraph coloringen_US
dc.subjectInformation theoryen_US
dc.titleDistributed Resource Allocation with Local Informationen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentElectrical and Computer Engineeringen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis1.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
935 B
Format:
Plain Text
Description: