A Linearized Bregman Algorithm for Decentralized Basis Pursuit

dc.contributor.authorYuan, K.en_US
dc.contributor.authorLing, Q.en_US
dc.contributor.authorYin, W.en_US
dc.contributor.authorRibeiro, A.en_US
dc.date.accessioned2018-06-19T17:48:49Zen_US
dc.date.available2018-06-19T17:48:49Zen_US
dc.date.issued2013-04en_US
dc.date.noteApril 2013en_US
dc.description.abstractWe solve a decentralized basis pursuit problem in a multiagent system, where each agent holds part of the linear observations on a common sparse vector, and all the agents collaborate to recover the sparse vector through limited neighbor-to-neighbor communication. The proposed decentralized linearized Bregman algorithm solves the Lagrange dual of an augmented l1 model that is equivalent to basis pursuit. The fact that this dual problem is unconstrained and differentiable enables a lightweight yet efficient decentralized gradient algorithm. We prove nearly linear convergence of the algorithm in the sense that uniformly for every agent i, the error obeys |x_i(k) - x*|<=e(k) and e(k)<=rho e(k-1)+gamma, where rho<=1 and gamma>=0 are independent of k or i. Numerical experiments demonstrate this convergence.en_US
dc.format.extent5 ppen_US
dc.identifier.citationYuan, K., Ling, Q., Yin, W., et al.. "A Linearized Bregman Algorithm for Decentralized Basis Pursuit." (2013) <a href="https://hdl.handle.net/1911/102218">https://hdl.handle.net/1911/102218</a>.en_US
dc.identifier.digitalTR13-06en_US
dc.identifier.urihttps://hdl.handle.net/1911/102218en_US
dc.language.isoengen_US
dc.titleA Linearized Bregman Algorithm for Decentralized Basis Pursuiten_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR13-06.PDF
Size:
212.52 KB
Format:
Adobe Portable Document Format