Damped Inexact Quasi-Newton Methods

dc.contributor.authorSteihaug, Tronden_US
dc.date.accessioned2018-06-18T17:18:54Zen_US
dc.date.available2018-06-18T17:18:54Zen_US
dc.date.issued1981-12en_US
dc.date.noteDecember 1981en_US
dc.description.abstractThe inexact quasi-Newton methods are very attractive methods for large scale optimization since they require only an approximate solution of the linear system of equations for each iteration. To achieve global convergence results, we adjust the step using a backtracking strategy. We discuss the backtracking strategy in detail and show that this strategy has similar convergence properties as one obtains by using line searches with the Goldstein-Armijo conditions. The combination of backtracking and inexact quasi-Newton methods is particularly attractive since the conditions for convergence are easily met. We give conditions for Q-linear and Q-superlinear convergence.en_US
dc.format.extent27 ppen_US
dc.identifier.citationSteihaug, Trond. "Damped Inexact Quasi-Newton Methods." (1981) <a href="https://hdl.handle.net/1911/101545">https://hdl.handle.net/1911/101545</a>.en_US
dc.identifier.digitalTR81-03en_US
dc.identifier.urihttps://hdl.handle.net/1911/101545en_US
dc.language.isoengen_US
dc.titleDamped Inexact Quasi-Newton Methodsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR81-03.pdf
Size:
360.11 KB
Format:
Adobe Portable Document Format