Multiscale Queuing Analysis of Long-Range-Dependent Network Traffic

dc.citation.bibtexNamearticleen_US
dc.citation.journalTitleIEEE Transactions on Networkingen_US
dc.contributor.authorRibeiro, Vinay Josephen_US
dc.contributor.authorRiedi, Rudolf H.en_US
dc.contributor.authorCrouse, Matthewen_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.orgCenter for Multimedia Communications (http://cmc.rice.edu/)en_US
dc.contributor.orgDigital Signal Processing (http://dsp.rice.edu/)en_US
dc.date.accessioned2007-10-31T01:00:20Zen_US
dc.date.available2007-10-31T01:00:20Zen_US
dc.date.issued2001-02-20en_US
dc.date.modified2002-05-20en_US
dc.date.submitted2002-05-20en_US
dc.descriptionJournal Paperen_US
dc.description.abstractThis paper develops a novel approach to queuing analysis tailor-made for multiscale long-range-dependent (LRD) traffic models. We review two such traffic models, the wavelet-domain independent Gaussian model (WIG) and the multifractal wavelet model (MWM). The WIG model is a recent generalization of the ubiquitous fractional Brownian motion process. Both models are based on a multiscale binary tree structure that captures the correlation structure of traffic and hence its LRD. Due to its additive nature, the WIG is inherently Gaussian, while the multiplicative MWM is non-Gaussian. The MWM is set within the framework of multifractals, which provide natural tools to measure the multiscale statistical properties of traffic loads, in particular their burstiness. Our queuing analysis leverages the tree structure of the models and provides a simple closed-form approximation to the tail queue probability for any given queue size. This makes the WIG and MWM suitable for numerous practical applications, including congestion control, admission control, and cross-traffic estimation. The queuing analysis reveals that the marginal distribution and, in particular, the large values of traffic at different time scales strongly affect queuing. This implies that merely modeling the traffic variance at multiple time scales, or equivalently, the second-order correlation structure, can be insufficient for capturing the queuing behavior of real traffic. We confirm these analytical findings by comparing the queuing behavior of WIG and MWM traffic through simulations.en_US
dc.identifier.citationV. J. Ribeiro, R. H. Riedi, M. Crouse and R. G. Baraniuk, "Multiscale Queuing Analysis of Long-Range-Dependent Network Traffic," <i>IEEE Transactions on Networking,</i> 2001.en_US
dc.identifier.urihttps://hdl.handle.net/1911/20250en_US
dc.language.isoengen_US
dc.subjectqueuingen_US
dc.subjectwaveletsen_US
dc.subjectmultiscaleen_US
dc.subjectmultifractalsen_US
dc.subjectnetworksen_US
dc.subjecttrafficen_US
dc.subject.keywordqueuingen_US
dc.subject.keywordwaveletsen_US
dc.subject.keywordmultiscaleen_US
dc.subject.keywordmultifractalsen_US
dc.subject.keywordnetworksen_US
dc.subject.keywordtrafficen_US
dc.subject.otherSignal Processing for Networkingen_US
dc.titleMultiscale Queuing Analysis of Long-Range-Dependent Network Trafficen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Rib2001Feb1Multiscale.PDF
Size:
420.59 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Rib2001Feb1Multiscale.PS
Size:
747.53 KB
Format:
Postscript Files