Mixed Methods on Quadrilaterals and Hexahedra

dc.contributor.authorKeenan, Philip T.en_US
dc.date.accessioned2018-06-18T17:39:39Zen_US
dc.date.available2018-06-18T17:39:39Zen_US
dc.date.issued1992-04en_US
dc.date.noteApril 1992 (Revised May 1992)en_US
dc.description.abstractWe describe a new family of discrete spaces suitable for use with mixed methods on general quadrilateral and hexahedral elements. The new spaces are natural in the sense of differential geometry, so all the usual mixed method theory, including the hybrid formulation, carries over to these new elements with proofs unchanged. Because transforming general quadrilaterals into squares introduces nonlinearity and because mixed methods involve the divergence operator, the new spaces are more complicated than either the corresponding Raviart-Thomas spaces for rectangles or corresponding finite element spaces for quadrilaterals. These new elements may be useful in topologically regular grids, where initially rectangular grids are deformed to match features of the physical region.en_US
dc.format.extent31 ppen_US
dc.identifier.citationKeenan, Philip T.. "Mixed Methods on Quadrilaterals and Hexahedra." (1992) <a href="https://hdl.handle.net/1911/101753">https://hdl.handle.net/1911/101753</a>.en_US
dc.identifier.digitalTR92-13en_US
dc.identifier.urihttps://hdl.handle.net/1911/101753en_US
dc.language.isoengen_US
dc.titleMixed Methods on Quadrilaterals and Hexahedraen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR92-13.pdf
Size:
380.05 KB
Format:
Adobe Portable Document Format