An Efficient Postprocessor for Velocities from Mixed Methods on Triangular Elements

dc.contributor.authorKeenan, Philip T.en_US
dc.date.accessioned2018-06-18T17:41:50Zen_US
dc.date.available2018-06-18T17:41:50Zen_US
dc.date.issued1994-05en_US
dc.date.noteMay 1994en_US
dc.description.abstractCertain finite difference methods on rectangular grids for second order elliptic equations are known to yield superconvergent flux approximations. A class of related finite difference methods have recently been defined for triangular meshes by applying special quadrature rules to an extended version of a mixed finite element method [1]; the flux vector fields from these methods are not superconvergent. This report presents empirical evidence indicating that a simple local postprocessing technique recovers higher order accurate vector velocities at element centers on many meshes of triangular elements, with approximately second order accuracy on three lines meshes.en_US
dc.format.extent12 ppen_US
dc.identifier.citationKeenan, Philip T.. "An Efficient Postprocessor for Velocities from Mixed Methods on Triangular Elements." (1994) <a href="https://hdl.handle.net/1911/101837">https://hdl.handle.net/1911/101837</a>.en_US
dc.identifier.digitalTR94-22en_US
dc.identifier.urihttps://hdl.handle.net/1911/101837en_US
dc.language.isoengen_US
dc.titleAn Efficient Postprocessor for Velocities from Mixed Methods on Triangular Elementsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR94-22.pdf
Size:
189.39 KB
Format:
Adobe Portable Document Format