Least-Change Secant Update Methods with Inaccurate Secant Conditions

dc.contributor.authorDennis, J.E. Jr.en_US
dc.contributor.authorWalker, Homer F.en_US
dc.date.accessioned2018-06-18T17:23:13Zen_US
dc.date.available2018-06-18T17:23:13Zen_US
dc.date.issued1983-11en_US
dc.date.noteNovember 1983en_US
dc.description.abstractIn this paper, we investigate the role of the secant or quasi-Newton condition in the sparse Broyden or Schubert update method for solving systems of nonlinear equations whose Jacobians are either sparse, or can be approximated acceptably by conveniently sparse matrices. We develop a general theory on perturbations to the secant equation that will still allow a proof of local <em>q</em>-linear convergence. To illustrate the theory, we show how to generalize the standard secant condition to the case when the function difference is contaminated by noise.en_US
dc.format.extent42 ppen_US
dc.identifier.citationDennis, J.E. Jr. and Walker, Homer F.. "Least-Change Secant Update Methods with Inaccurate Secant Conditions." (1983) <a href="https://hdl.handle.net/1911/101568">https://hdl.handle.net/1911/101568</a>.en_US
dc.identifier.digitalTR83-26ben_US
dc.identifier.urihttps://hdl.handle.net/1911/101568en_US
dc.language.isoengen_US
dc.titleLeast-Change Secant Update Methods with Inaccurate Secant Conditionsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR83-26b.pdf
Size:
506.33 KB
Format:
Adobe Portable Document Format