Feasibility of Passive Eavesdropping in Massive MIMO: An Experimental Approach

dc.contributor.advisorKnightly, Edward
dc.creatorYeh, Chia-Yi
dc.date.accessioned2019-05-17T13:23:18Z
dc.date.available2019-05-17T13:23:18Z
dc.date.created2017-12
dc.date.issued2018-04-18
dc.date.submittedDecember 2017
dc.date.updated2019-05-17T13:23:19Z
dc.description.abstractMassive MIMO systems have the potential for preventing passive eavesdropping as the signal transmitted by a large antenna array becomes highly focused. Prior works showed that passive eavesdropping becomes negligible when the number of BS antennas approaches to infinity in independent Rayleigh channel from a secrecy rate perspective. However, in practical massive MIMO systems, the number of BS antennas is in the order of a hundred, not infinity. Also, channels in the real world are not ideally independent. Furthermore, secrecy rate does not directly indicate whether a transmission can be decoded by the eavesdropper in practical wireless transmission. In this work, our analysis is based on real channel measurements from a 96-antenna ArgosV2 BS in 2.4 GHz band indoor environment with a LOS component. Instead of the asymptotic behavior, we focus on how the increasing number of BS antennas affect passive eavesdropping. Also, we propose to use the SNR difference between the intended user Bob and the eavesdropper Eve as a metric to determine how resistant to passive eavesdropping a system is. From our analysis based on real channel measurements, we find that increasing the number of antennas at the BS improves the ability of preventing passive eavesdropping, and a 96-antenna BS has the potential to prevent passive eavesdropping in the indoor LOS environment with careful power control. However, compared to the independent Rayleigh channel, indoor LOS environment is less passive-eavesdropping resistant under the same number of BS antennas. Furthermore, the marginal benefit of increasing an antenna in the indoor LOS environment decreases much faster than in the independent Rayleigh channel scenario.
dc.format.mimetypeapplication/pdf
dc.identifier.citationYeh, Chia-Yi. "Feasibility of Passive Eavesdropping in Massive MIMO: An Experimental Approach." (2018) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/105588">https://hdl.handle.net/1911/105588</a>.
dc.identifier.urihttps://hdl.handle.net/1911/105588
dc.language.isoeng
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
dc.subjectmassive MIMO
dc.subjectpassive eavesdropping
dc.subjectmeasurements
dc.subjectphysical layer security
dc.titleFeasibility of Passive Eavesdropping in Massive MIMO: An Experimental Approach
dc.typeThesis
dc.type.materialText
thesis.degree.departmentElectrical and Computer Engineering
thesis.degree.disciplineEngineering
thesis.degree.grantorRice University
thesis.degree.levelMasters
thesis.degree.nameMaster of Science
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
YEH-DOCUMENT-2017.pdf
Size:
749.63 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.6 KB
Format:
Plain Text
Description: