Interaction of hydrogen with group IV semiconductor surfaces

dc.contributor.advisorD'Evelyn, Mark P.
dc.creatorYang, Yuemei L.
dc.date.accessioned2009-06-03T23:54:49Z
dc.date.available2009-06-03T23:54:49Z
dc.date.issued1992
dc.description.abstractA preliminary temperature-programmed desorption (TPD) study of hydrogen desorbing from diamond (100) concludes that the previously-reported non-saturation behavior of the surface is an experimental artifact resulting from desorption from the Ta heater. Critical conditions for conducting an accurate TPD measurement are identified. In its first application to the diamond surface study in which lateral periodic boundary conditions are incorporated, the molecular mechanics method (MM3) has been shown to be a useful tool in determining surface structures and energetics, employing modest-sized clusters. Atomic structures and energetics of the diamond (100)-(2$\times$1), (100)-(2$\times$1):H, (100)-(1$\times$1):2H, and (100)-(3$\times$1):1.33H surfaces have been calculated. Pairs of surface carbon atoms form symmetric dimers on the reconstructed diamond (100)-(2$\times$1), (100)-(2$\times$1):H, and (100)-(3$\times$1):1.33H surfaces, with dimer bond lengths of 1.46 A, 1.63 A, and 1.59 A, respectively, corresponding to strained double or single bonds. The full (100)-(1$\times$1):2H dihydride is highly strained due to H-H repulsions, causing a reduction of the H--C--H bond angle and twisting about the surface normal, and is predicted to be thermodynamically unstable with respect to dehydrogenation to the monohydride. Some important gas-surface reactions involving hydrogen and the diamond (100) and (100)-(2$\times$1):H are discussed in light of the derived energetics. We have noted that preferential pairing of chemisorbed hydrogen on Si(100) is a direct result of the partial $\pi$-bond existing on the surface dimers. A lattice-gas model has been developed based on this concept, and predicts that, with a modest pairing energy, hydrogen desorption adopts near-first-order kinetics at high coverages but deviates from first-order kinetics at low coverages. We calculated the pairing energy of adsorbed H to be about 7.5 kcal/mol, based on a comparison of the predictions of the model with experiment. We conclude that preferential pairing on dimers is a general feature of hydrogen adsorption on the (100) surfaces of group IV semiconductors.
dc.format.extent167 p.en_US
dc.format.mimetypeapplication/pdf
dc.identifier.callnoThesis Chem. 1992 Yang
dc.identifier.citationYang, Yuemei L.. "Interaction of hydrogen with group IV semiconductor surfaces." (1992) Diss., Rice University. <a href="https://hdl.handle.net/1911/16533">https://hdl.handle.net/1911/16533</a>.
dc.identifier.urihttps://hdl.handle.net/1911/16533
dc.language.isoeng
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
dc.subjectPhysical chemistry
dc.titleInteraction of hydrogen with group IV semiconductor surfaces
dc.typeThesis
dc.type.materialText
thesis.degree.departmentChemistry
thesis.degree.disciplineNatural Sciences
thesis.degree.grantorRice University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9234384.PDF
Size:
5.94 MB
Format:
Adobe Portable Document Format