Invariants of graphs
dc.contributor.advisor | Cochran, Tim D. | en_US |
dc.creator | Ghuman, Simrat M. | en_US |
dc.date.accessioned | 2009-06-03T23:52:14Z | en_US |
dc.date.available | 2009-06-03T23:52:14Z | en_US |
dc.date.issued | 1993 | en_US |
dc.description.abstract | We define an infinite sequence of invariants $\bar\mu\sb{K}$ of connected, finite graphs K. These invariants detect whether or not a "longitude" associated to a cycle in K lies in the $n\sp{th}$ term of the lower central series of $\pi\sb1(S\sp3-K,p)$. In certain cases, these invariants can be compared to Milnor's $\bar\mu$-invariants associated to links contained in K, and are found to be more discriminating. | en_US |
dc.format.extent | 36 p. | en_US |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.callno | Thesis Math. 1993 Ghuman | en_US |
dc.identifier.citation | Ghuman, Simrat M.. "Invariants of graphs." (1993) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/13729">https://hdl.handle.net/1911/13729</a>. | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/13729 | en_US |
dc.language.iso | eng | en_US |
dc.rights | Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Invariants of graphs | en_US |
dc.type | Thesis | en_US |
dc.type.material | Text | en_US |
thesis.degree.department | Mathematics | en_US |
thesis.degree.discipline | Natural Sciences | en_US |
thesis.degree.grantor | Rice University | en_US |
thesis.degree.level | Masters | en_US |
thesis.degree.name | Master of Arts | en_US |
Files
Original bundle
1 - 1 of 1