Local Analysis of Inexact Quasi-Newton Methods

dc.contributor.authorEisenstat, Stanley C.en_US
dc.contributor.authorSteihaug, Tronden_US
dc.date.accessioned2018-06-18T17:19:49Zen_US
dc.date.available2018-06-18T17:19:49Zen_US
dc.date.issued1982-05en_US
dc.date.noteMay 1982en_US
dc.description.abstractQuasi-Newton methods are well known iterative methods for solving nonlinear problems. At each stage, a system of linear equations has to be solved. However, for large scale problems, solving the linear system of equations can be expensive and may not be justified when the iterate is far from the solution or when the matrix is an approximation to the Jacobian or Hessian matrix. Instead we consider a class of inexact quasi-Newton methods which solves the linear system only approximately. We derive conditions for local and superlinear rate of convergence in terms of a relative residual.en_US
dc.format.extent23 ppen_US
dc.identifier.citationEisenstat, Stanley C. and Steihaug, Trond. "Local Analysis of Inexact Quasi-Newton Methods." (1982) <a href="https://hdl.handle.net/1911/101548">https://hdl.handle.net/1911/101548</a>.en_US
dc.identifier.digitalTR82-07en_US
dc.identifier.urihttps://hdl.handle.net/1911/101548en_US
dc.language.isoengen_US
dc.titleLocal Analysis of Inexact Quasi-Newton Methodsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR82-07.pdf
Size:
338.91 KB
Format:
Adobe Portable Document Format