Shape Optimization in Unsteady Blood Flow: A Numerical Study of Non-Newtonian Effects

dc.contributor.authorAbraham, Febyen_US
dc.contributor.authorBehr, Mareken_US
dc.contributor.authorHeinkenschloss, Matthiasen_US
dc.date.accessioned2018-06-18T17:52:02Zen_US
dc.date.available2018-06-18T17:52:02Zen_US
dc.date.issued2004-08en_US
dc.date.noteAugust 2004en_US
dc.description.abstractThis paper presents a numerical study of non-Newtonian effects on the solution of shape optimization problems involving unsteady pulsatile blood flow. We consider an idealized two-dimensional arterial graft geometry. Our computations are based on the Navier-Stokes equations generalized to non-Newtonian fluid, with the Carreau-Yasuda model employed to account for the shear-thinning behavior of blood. Using a gradient-based optimization algorithm, we compare the optimal shapes obtained using both the Newtonian and generalized Newtonian constitutive equations. Depending on the shear rate prevalent in the domain, substantial differences in the flow as well as in the computed optimal shape are observed when the Newtonian constitutive equation is replaced by the Carreau-Yasuda model. By varying a geometric parameter in our test case, we investigate the influence of the shear rate on the solution.en_US
dc.format.extent17 ppen_US
dc.identifier.citationAbraham, Feby, Behr, Marek and Heinkenschloss, Matthias. "Shape Optimization in Unsteady Blood Flow: A Numerical Study of Non-Newtonian Effects." (2004) <a href="https://hdl.handle.net/1911/102026">https://hdl.handle.net/1911/102026</a>.en_US
dc.identifier.digitalTR04-14en_US
dc.identifier.urihttps://hdl.handle.net/1911/102026en_US
dc.language.isoengen_US
dc.titleShape Optimization in Unsteady Blood Flow: A Numerical Study of Non-Newtonian Effectsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR04-14.pdf
Size:
8.31 MB
Format:
Adobe Portable Document Format