Krylov-Secant Methods for Solving Systems of Nonlinear Equations

dc.contributor.authorKlíe, Héctoren_US
dc.contributor.authorRamé, Marceloen_US
dc.contributor.authorWheeler, Mary F.en_US
dc.date.accessioned2018-06-18T17:42:19Zen_US
dc.date.available2018-06-18T17:42:19Zen_US
dc.date.issued1995-09en_US
dc.date.noteSeptember 1995en_US
dc.description.abstractWe present a novel way of reusing the Krylov information generated by GMRES for solving the linear system arising within a Newton method. Our approach departs from the theory of secant preconditioners developed by Martinez and then combines secant updates of the Hessenberg matrix generated by the Arnoldi process in GMRES, the Richardsn iteration and limited memory quasi-Newton compact representations to generate descent directions for each Newton step. The proposed method allows to reflect - without explicitly computing them - secant updates of the Jacobian matrix that lead us to skip GMRES for the benefit of satisfying the Dembo-Eisenstat-Steihaug condition. Hence, the resulting method turns out to be computationally more economical than traditional inexact Newton implementations. Computational experiments reveal the suitability of this approach for large scale problems in several application contexts.en_US
dc.format.extent37 ppen_US
dc.identifier.citationKlíe, Héctor, Ramé, Marcelo and Wheeler, Mary F.. "Krylov-Secant Methods for Solving Systems of Nonlinear Equations." (1995) <a href="https://hdl.handle.net/1911/101868">https://hdl.handle.net/1911/101868</a>.en_US
dc.identifier.digitalTR95-27en_US
dc.identifier.urihttps://hdl.handle.net/1911/101868en_US
dc.language.isoengen_US
dc.titleKrylov-Secant Methods for Solving Systems of Nonlinear Equationsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR95-27.pdf
Size:
736.99 KB
Format:
Adobe Portable Document Format