Using glueing diagrams to find boundary curves of incompressible surfaces in a hyperbolic knot space
dc.contributor.advisor | Veech, William A. | en_US |
dc.contributor.committeeMember | Culler, Marc | en_US |
dc.contributor.committeeMember | Shalen, Peter B. | en_US |
dc.contributor.committeeMember | Hempel, John | en_US |
dc.creator | Cohn, Aaron I. | en_US |
dc.date.accessioned | 2018-12-18T21:33:02Z | en_US |
dc.date.available | 2018-12-18T21:33:02Z | en_US |
dc.date.issued | 1984 | en_US |
dc.description | No page 2 | en_US |
dc.description.abstract | We calculate some boundary curves of incompressible surfaces in some knot spaces. This method is based on a theorem of Marc Culler and Peter Shaien, and we make use of some calculations done by William Menasco. | en_US |
dc.format.digitalOrigin | reformatted digital | en_US |
dc.format.extent | 49 pp | en_US |
dc.identifier.callno | Thesis Math. 1984 Cohn | en_US |
dc.identifier.citation | Cohn, Aaron I.. "Using glueing diagrams to find boundary curves of incompressible surfaces in a hyperbolic knot space." (1984) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/104840">https://hdl.handle.net/1911/104840</a>. | en_US |
dc.identifier.digital | RICE2486 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/104840 | en_US |
dc.language.iso | eng | en_US |
dc.rights | Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder. | en_US |
dc.title | Using glueing diagrams to find boundary curves of incompressible surfaces in a hyperbolic knot space | en_US |
dc.type | Thesis | en_US |
dc.type.material | Text | en_US |
thesis.degree.department | Mathematics | en_US |
thesis.degree.discipline | Natural Sciences | en_US |
thesis.degree.grantor | Rice University | en_US |
thesis.degree.level | Masters | en_US |
thesis.degree.name | Master of Arts | en_US |
Files
Original bundle
1 - 1 of 1