A Fast TVL1-L2 Minimization Algorithm for Signal Reconstruction from Partial Fourier Data

dc.contributor.authorYang, Junfengen_US
dc.contributor.authorZhang, Yinen_US
dc.contributor.authorYin, Wotaoen_US
dc.date.accessioned2018-06-19T17:13:03Zen_US
dc.date.available2018-06-19T17:13:03Zen_US
dc.date.issued2008-10en_US
dc.date.noteOctober 2008en_US
dc.description.abstractRecent compressive sensing results show that it is possible to accurately reconstruct certain compressible signals from relatively few linear measurements via solving nonsmooth convex optimization problems. In this paper, we propose a simple and fast algorithm for signal reconstruction from partial Fourier data. The algorithm minimizes the sum of three terms corresponding to total variation, $\ell_1$-norm regularization and least squares data fitting. It uses an alternating minimization scheme in which the main computation involves shrinkage and fast Fourier transforms (FFTs), or alternatively discrete cosine transforms (DCTs) when available data are in the DCT domain. We analyze the convergence properties of this algorithm, and compare its numerical performance with two recently proposed algorithms. Our numerical simulations on recovering magnetic resonance images (MRI) indicate that the proposed algorithm is highly efficient, stable and robust.en_US
dc.format.extent10 ppen_US
dc.identifier.citationYang, Junfeng, Zhang, Yin and Yin, Wotao. "A Fast TVL1-L2 Minimization Algorithm for Signal Reconstruction from Partial Fourier Data." (2008) <a href="https://hdl.handle.net/1911/102105">https://hdl.handle.net/1911/102105</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/102105en_US
dc.language.isoengen_US
dc.titleA Fast TVL1-L2 Minimization Algorithm for Signal Reconstruction from Partial Fourier Dataen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR08-27.pdf
Size:
280.29 KB
Format:
Adobe Portable Document Format
Description: