A factored, interpolatory subdivision scheme for surfaces of revolution

dc.contributor.advisorWarren, Joeen_US
dc.creatorSchaefer, Scott Daviden_US
dc.date.accessioned2009-06-04T08:28:33Zen_US
dc.date.available2009-06-04T08:28:33Zen_US
dc.date.issued2003en_US
dc.description.abstractWe present a new non-stationary, interpolatory subdivision scheme capable of producing circles and surfaces of revolution and in the limit is C1. First, we factor the classical four point interpolatory scheme of Dyn et al. into linear subdivision plus differencing. We then extend this method onto surfaces by performing bilinear subdivision and a generalized differencing pass. This extension also provides the ability to interpolate curve networks. On open nets this simple, yet efficient, scheme reproduces the curve rule, which allows C0 creases by joining two patches together that share the same boundary. Our subdivision scheme also contains a tension parameter that changes with the level of subdivision and gives the scheme its non-stationary property. This tension is updated using a simple recurrence and, chosen correctly, can produce exact surfaces of revolution.en_US
dc.format.extent36 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.callnoTHESIS COMP.SCI. 2003 SCHAEFERen_US
dc.identifier.citationSchaefer, Scott David. "A factored, interpolatory subdivision scheme for surfaces of revolution." (2003) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/17622">https://hdl.handle.net/1911/17622</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/17622en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectComputer scienceen_US
dc.titleA factored, interpolatory subdivision scheme for surfaces of revolutionen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentComputer Scienceen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Scienceen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1414294.PDF
Size:
1.7 MB
Format:
Adobe Portable Document Format