Gradient Methods for Convex Minimization: Better Rates Under Weaker Conditions

dc.contributor.authorZhang, Huien_US
dc.contributor.authorYin, Wotaoen_US
dc.date.accessioned2018-06-19T17:48:48Zen_US
dc.date.available2018-06-19T17:48:48Zen_US
dc.date.issued2013-03en_US
dc.date.noteMarch 2013en_US
dc.description.abstractThe convergence behavior of gradient methods for minimizing convex differentiable functions is one of the core questions in convex optimization. This paper shows that their well-known complexities can be achieved under conditions weaker than the commonly assumed ones. We relax the common gradient Lipschitz-continuity condition and strong convexity condition to ones that hold only over certain line segments. Specifically, we establish complexities O(R/eps) and O(sqrt(R/eps)) for the ordinary and accelerate gradient methods, respectively, assuming that ∇f is Lipschitz continuous with constant R over the line segment joining x and x-∇f/R for each x in the domain of f. Then we improve them to O((R/ν) log(1/eps)) and O(sqrt(R/ν) log(1/eps)) for function f that also satisfies the secant inequality (∇f(x))T(x-x*)> ≥ ν||x-x*||2 for each x in the domain of f and its projection x* to the minimizer set of f. The secant condition is also shown to be necessary for the geometric decay of solution error. Not only are the relaxed conditions met by more functions, the restrictions give smaller R and larger ν than they are without the restrictions and thus lead to better complexity bounds. We apply these results to sparse optimization and demonstrate a faster algorithm.en_US
dc.format.extent19 ppen_US
dc.identifier.citationZhang, Hui and Yin, Wotao. "Gradient Methods for Convex Minimization: Better Rates Under Weaker Conditions." (2013) <a href="https://hdl.handle.net/1911/102216">https://hdl.handle.net/1911/102216</a>.en_US
dc.identifier.digitalTR13-04en_US
dc.identifier.urihttps://hdl.handle.net/1911/102216en_US
dc.language.isoengen_US
dc.titleGradient Methods for Convex Minimization: Better Rates Under Weaker Conditionsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR13-04.PDF
Size:
580.48 KB
Format:
Adobe Portable Document Format