An Interior-Point Method with Polynomial Complexity and Superlinear Convergence for Linear Complementarity Problems

dc.contributor.authorJi, Junen_US
dc.contributor.authorPotra, Florianen_US
dc.contributor.authorTapia, Richarden_US
dc.contributor.authorZhang, Yinen_US
dc.date.accessioned2018-06-18T17:30:46Zen_US
dc.date.available2018-06-18T17:30:46Zen_US
dc.date.issued1991-07en_US
dc.date.noteJuly 1991en_US
dc.description.abstractFor linear programming, a primal-dual interior-point algorithm was recently constructed by Zhang and Tapia that achieves both polynomial complexity and Q-superlinear convergence (Q-quadratic in the nondegenerate case). In this paper, we extend their results to quadratic programming and linear complementarity problems.en_US
dc.format.extent25 ppen_US
dc.identifier.citationJi, Jun, Potra, Florian, Tapia, Richard, et al.. "An Interior-Point Method with Polynomial Complexity and Superlinear Convergence for Linear Complementarity Problems." (1991) <a href="https://hdl.handle.net/1911/101724">https://hdl.handle.net/1911/101724</a>.en_US
dc.identifier.digitalTR91-23en_US
dc.identifier.urihttps://hdl.handle.net/1911/101724en_US
dc.language.isoengen_US
dc.titleAn Interior-Point Method with Polynomial Complexity and Superlinear Convergence for Linear Complementarity Problemsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR91-23.pdf
Size:
260.87 KB
Format:
Adobe Portable Document Format