On the smooth linear section of the Grassmannian Gr(2, n)

dc.contributor.advisorHassett, Brendan E.en_US
dc.creatorXu, Feien_US
dc.date.accessioned2013-03-08T00:40:06Zen_US
dc.date.available2013-03-08T00:40:06Zen_US
dc.date.issued2012en_US
dc.descriptionpage 29 is missing from hardcopyen_US
dc.description.abstractIn this thesis, we will study the smooth linear section of the Grassmannian Gr(2, n). Explicitly, we give a criterion for the rationality of such linear section in terms of its codimension in the Plü ̈cker embedding in projective space. Moreover, to obtain a better understanding of the birational parametrization of these linear sections, we analyze their Hodge structures in the cases of even and odd codimensions. To be more precise, we provide numerous examples which suggest certain patterns of Hodge diamonds corresponding to even and odd cases and derive the proof of general patterns for codimension 3 smooth linear section of Gr(2, n) corresponding to odd and even n.en_US
dc.format.extent101 p.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.callnoTHESIS MATH. 2012 XUen_US
dc.identifier.citationXu, Fei. "On the smooth linear section of the Grassmannian Gr(2, n)." (2012) Diss., Rice University. <a href="https://hdl.handle.net/1911/70498">https://hdl.handle.net/1911/70498</a>.en_US
dc.identifier.digitalXuFen_US
dc.identifier.urihttps://hdl.handle.net/1911/70498en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectPure sciencesen_US
dc.subjectGrassmannianen_US
dc.subjectSmooth linear sectionen_US
dc.subjectHodge structuresen_US
dc.subjectMathematicsen_US
dc.titleOn the smooth linear section of the Grassmannian Gr(2, n)en_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentMathematicsen_US
thesis.degree.disciplineNatural Sciencesen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
XuF.pdf
Size:
1.32 MB
Format:
Adobe Portable Document Format